directional dependence using copulasmnstats.morris.umn.edu/molly olson/directional dependence... ·...

Post on 11-Dec-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Directional Dependence using Copulas Molly Olson

Faculty Mentor: Engin Sungur

Objectives

  Understanding the ideas of directional dependence, copulas, and spatial statistics

  Learn how to develop and the developing of new models

  Ultimately, apply to data

Directional Dependence

  Causal relationships can only be set through experiments

  Not “direction of dependence”

  Unemployment and education level

  Depends on the ‘way’ it’s looked at or introduced   Not limited to positive and negative dependence

Unemployment Education Level

Background and basic definitions:

Directional Dependence

  To better understand

Background and basic definitions:

http://assets.byways.org/asset_files/000/008/010/JK-view-up-tree.jpg?1258528818

http://www.upwithtrees.org/wp-content/uploads/2013/07/trees-566.jpg

Copulas

( )kXXX ,,, 21 … ( ) ( ) ( )kXXX xFxFxFk

,,, 21 21…

( )kXXX xxxFk

,,, 21,,, 21……

( ) ( ) ( )kXkXX xFUXFUXFUk

=== ,,, 2211 21…

( )kUUU ,,, 21 … ( )kuuuC ,,, 21 …

Background and basic definitions:

Copulas

  Multivariate functions with uniform marginals

  Eliminate influence of marginals

  Used to describe the dependence between R.V.

Background and basic definitions:

Directional Dependence and Copulas

  Symmetric.   Example: Farlie-Gumbel-Morgenstern’s family

Cθ(u, v) = uv + θuv(1 - u)(1 - v)

  If then we say the pair (U,V) is directionally dependent in joint behavior

Background and basic definitions:

Spatial Statistics

  2012, Orth

  Now

Background and basic definitions:

PVW (! ) = cos(! )V + sin(! )WCor(U,PVW (! ))

P2VW (!) = !sin(!)V + cos(!)WCor(PVW

1 (!),P2VW ("))

P1VW (!) = cos(!)V + sin(!)W

Procedure

  Start with U1, U2, U3, U4

  Uniform distribution

http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29

Procedure

Histogram of U4

U4

Frequency

0.0 0.2 0.4 0.6 0.8 1.0

05

1015

2025

30

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Independence between U1 and U2

U1

U2

Procedure

cos!1 sin!1 0 0!sin"1 cos"1 0 00 0 1 00 0 0 1

"

#

$$$$$

%

&

'''''

U1

U2

U3

U4

"

#

$$$$$

%

&

'''''

=

P(1,2)+

P(1,2)!

U3

U4

"

#

$$$$$

%

&

''''',

,

1 0 0 00 cos!2 sin!2 00 !sin"2 cos"2 00 0 0 1

"

#

$$$$$

%

&

'''''

P(1,2)+

P(1,2)!

U3

U4

"

#

$$$$$

%

&

'''''

=

P(1,2)+

P(1,2),3!+

P(1,2),3!!

U4

"

#

$$$$$$

%

&

''''''

,

1 0 0 00 1 0 00 0 cos!3 sin!30 0 !sin"3 cos"3

"

#

$$$$$

%

&

'''''

P(1,2)+

P(1,2),3!+

P(1,2),3!!

U4

"

#

$$$$$$

%

&

''''''

=

P(1,2)+

P(1,2),3!+

P[(1,2),3],4!!+

P[(1,2),3],4!!!

"

#

$$$$$$

%

&

''''''

Procedure Independence between U1 and U2

P(1,2)+

!1 =10!,"1 = 25

!,!2 = 85!,"2 =15

!,!3 = 81!,"3 =17

!

P(1,2)+

P(1,2),3!+

P[(1,2),3],4!!+

P[(1,2),3],4!!!

!1 = 81!,"1 =18

!,!2 = 33!,"2 = 73

!

P(1,2),3!+

P(1,2),3!!

U4

P(1,2)+ vs P(1,2)

1 with !1 = 80!,"1 = 20

!

U1

Procedure

Process

  Find exact correlations

  We know correlations between Ui’s are 0

Result

  2012

  One angle

45 90 135 180 225 270 315 360Θ

�1

�0.5

0.5

1

ΡDU DV �Θ�

0

15 °

30 °

45 °

60 °75 °90 °105 °

120 °

135 °

150 °

165 °

180 °

195 °

210 °

225 °

240 °255 ° 270 ° 285 °

300 °

315 °

330 °

345 °

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

ΡDU DV �Θ�

Result Theorem 1. Suppose that (Ui,Uj) are independent uniform random variables on the interval (0,1).

Define P1=cos(α)Ui+sin(α)Uj and P2=-sin(β)Ui+cos(β)Uj. Then,

(1)

(2) Cor(α,β)=-Cor(β,α)

(3) If α=β=θ, then (P1,P2) are independent.

Sin(β-α) Cov P(!,")( ) =

1/12 (1/12)sin(! !")(1 /12)sin(! !") 1 /12

"

#$$

%

&''

Cor P(!,")( ) =1 sin(! !")

sin(! !") 1

"

#$$

%

&''

Sin(α-β)

Result Theorem 2. Suppose that (U1,U2,U3,U4) are independent uniform random variables on the interval (0,1). Define

cos!1 sin!1 0 0!sin"1 cos"1 0 00 0 1 00 0 0 1

"

#

$$$$$

%

&

'''''

U1

U2

U3

U4

"

#

$$$$$

%

&

'''''

=

P(1,2)+

P(1,2)!

U3

U4

"

#

$$$$$$

%

&

''''''

1 0 0 00 cos!2 sin!2 00 !sin"2 cos"2 00 0 0 1

"

#

$$$$$

%

&

'''''

P(1,2)+

P(1,2)!

U3

U4

"

#

$$$$$$

%

&

''''''

=

P(1,2)+

P(1,2),3!+

P(1,2),3!!

U4

"

#

$$$$$$

%

&

''''''

1 0 0 00 1 0 00 0 cos!3 sin!30 0 !sin"3 cos"3

"

#

$$$$$

%

&

'''''

P(1,2)+

P(1,2),3!+

P(1,2),3!!

U4

"

#

$$$$$$

%

&

''''''

=

P(1,2)+

P(1,2),3!+

P[(1,2),3],4!!+

P[(1,2),3],4!!!

"

#

$$$$$$

%

&

''''''

Then Cov P(1,2)+ ,P(1,2),3

!+( ) =1/12 (1/12)cos(!2 )sin(!1 !"1)

(1 /12)cos(!2 )sin(!1 !"1) 1 /12

"

#$$

%

&''

Cor P(1,2)+ ,P(1,2),3

!+( ) =1 cos(!2 )sin(!1 !"1)

cos(!2 )sin(!1 !"1) 1

"

#$$

%

&''

Cov P(1,2)+ ,P[(1,2),3],4

!!+( ) =1/12 !(1 /12)cos(!3)sin(!1 !"1)sin("2 )

!(1 /12)cos(!3)sin(!1 !"1)sin("2 ) 1 /12

"

#$$

%

&''

Cor P(1,2)+ ,P[(1,2),3],4

!!+( ) =1 !cos(!3)sin(!1 !"1)sin("2 )

!cos(!3)sin(!1 !"1)sin("2 ) 1

"

#$$

%

&''

Cov P(1,2)+ ,P[(1,2),3],4

!!!( ) =1/12 (1/12)sin(!3)sin("1 !!1)sin(!2 )

(1 /12)sin(!3)sin("1 !!1)sin(!2 ) 1 /12

"

#$$

%

&''

Cor P(1,2)+ ,P[(1,2),3],4

!!!( ) =1 sin(!3)sin("1 !!1)sin(!2 )

sin(!3)sin("1 !!1)sin(!2 ) 1

"

#$$

%

&''

Cov P(1,2),3!+ ,P[(1,2),3],4

!!+( ) =1/12 (1/12)cos(!3)sin(!2 !"2 )

(1 /12)cos(!3)sin(!2 !"2 ) 1 /12

"

#$$

%

&''

Cor P(1,2),3!+ ,P[(1,2),3],4

!!+( ) =1 cos(!3)sin(!2 !"2 )

cos(!3)sin(!2 !"2 ) 1

"

#$$

%

&''

Cov P(1,2),3!+ ,P[(1,2),3],4

!!!( ) =1/12 !(1 /12)sin(!3)sin("2 !!2 )

!(1 /12)sin(!3)sin("2 !!2 ) 1 /12

"

#$$

%

&''

Cor P(1,2),3!+ ,P[(1,2),3],4

!!!( ) =1 !sin(!3)sin("2 !!2 )

!sin(!3)sin("2 !!2 ) 1

"

#$$

%

&''

Cov P[(1,2),3],4!!+ ,P[(1,2),3],4

!!!( ) =1/12 (1/12)sin(!3 !"3)

(1 /12)sin(!3 !"3) 1 /12

"

#$$

%

&''

Cor P[(1,2),3],4!!+ ,P[(1,2),3],4

!!!( ) =1 sin(!3 !"3)

sin(!3 !"3) 1

"

#$$

%

&''

(2)

(1)

(3)

(4)

(5)

(6)

Result Then, a matrix plot of where

P(1,2)+ ,P(1,2),3

!+ ,P[(1,2),3],4!!+ ,P[(1,2),3],4

!!!

P(1,2)+

P(1,2),3!+

P[(1,2),3],4!!+

P[(1,2),3],4!!!

!1 =10!,"1 = 25

!,!2 = 85!,"2 =15

!,!3 = 81!,"3 =17

!

Result

  Not uniform anymore

  Rank

Simulation

  Motion Chart

Future Research

  Explore properties up to ‘n’ variables

  Find a copula with directional dependence property

  Apply these methods to a data set

References [1] Nelsen, R. B., An Introduction to copulas (2nd edn.), New York: Springer, 2006

[3] Sungur, E.A., Orth, J.M., Understanding Directional Dependence through Angular Correlations, 2011

[2] Sungur, E.A., Orth, J.M., Constructing a New Class of Copulas with Directional Dependence Property by Using Oblique Jacobi Transformations, 2012

top related