dirac matrices - binghamton universitybingweb.binghamton.edu/.../dirac_equation_iv-matrices.pdf1...

Post on 24-Feb-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Dirac matrices Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton (Date: January 21, 2016)

Here we present the properties of Dirac matrices. The manipulation of the matrices can be expressed using the Mathematica. All the notations including the contravariant and covariant tensors, which are conventionally used for the special relativity and general relativity are presented in the other chapter. With the use of the Mathematica program which is prepared here, it is possible to calculate any kind of the combination of Dirac matrices such as the commutation relations. We use the following notations in the Mathematica program

u[]→ , d[]→ ,

u[]→ , d[]→ ,

u[, ] , d[, ] ,

gu[, ] g , gd[, ] g ,

________________________________________________________________________ The metric tensor is defined by

1000

0100

0010

0001

gg (metric tensor)

The contravariant vector is described by

xgx

The matrices and can be expressed in terms of the Pauli spin matrices,

01

101x ,

0

02

i

iy ,

10

013z ,

and the identity matrix

2

10

01 2I .

Using the Kronecker product, the matrices 1 , 2 , 3 , and are given by

0

0

0

0

0001

0010

0100

1000

1

1111

x

xx

0

0

0

0

000

000

000

000

2

2212

y

yy

i

i

i

i

0

0

0

0

0010

0001

1000

0100

3

3313

z

zz

2

22

30

0

0

1000

0100

0010

0001

I

II

0

0

0

0

0001

0010

0100

1000

1

111

x

x

,

0

0

0

0

000

000

000

000

2

222

y

y

i

i

i

i

3

0

0

0

0

0010

0001

1000

0100

3

333

z

z

0

00

k

kkkk

00 kk or 0} ,{ 0 k

00

(Hermitian)

kk

(anti-Hermitian)

4

20 I , 4

2Ik

0},{ k (k = 1, 2, 3)

0

________________________________________________________________________

g

10

010

0

01

x

x

0

02

y

y

0

03

z

z

4 4 I

1

4

1

________________________________________________________________________ 5 is the fifth gamma matrix. It plays very important role in particle physics (related to

chiral symmetry) and in mathematical physics (index theorem for Dirac operator).

0

0

!4 2

232105

I

Iii

55

4

25 I

05115

05225

05335

________________________________________________________________________

0

0

2

232105

I

Ii

0123

10111213

132101

155

)()()()(

)(

i

i

i

or

0

0

2

25 I

I

________________________________________________________________________ Trace

0][ 5 Tr

5

iTr 4][ 32105

0][ 1221 Tr

________________________________________________________________________ Hermitian conjugate of

00

00

, kk

(k = 1, 2, 3) ________________________________________________________________________

0

001

x

x

0

002

y

y

0

003

z

z

0

0

2

2321

Ii

Ii

z

z

i

i

0

021

x

x

i

i

0

032

y

y

i

i

0

013

x

x

i

i

0

0320

6

y

y

i

i

0

0130

z

z

i

i

0

0210

4 },{2

1Ig (Clifford algebra)

_________________________________________________________________

] ,[2

ii

0

001

x

xi

0

003

z

zi

z

z

0

0312

x

x

0

0123

y

y

0

0231

_________________________________________________________________

],[2 i

0

0 01

x

x

i

i

0

002

y

y

i

i

7

0

003

z

z

i

i

z

z

0

012

x

x

0

023

y

y

0

031

________________________________________________________________________

ji

k

kk i

0

0 (i, j, k; cyclic)

213 i , 321 i , 132 i

or, simply,

kkk

k

kk

550

0

0

or, simply,

321 ,, α

0

01

x

xx

σ

,

0

02

y

yy

σ

,

0

03

z

zz

σ

with

8

0],[ 5 k ,

0],[ k ,

0],[ 5 k ,

0},{ 5

kji i 2],[ , kijji i (i, j, and k; cyclic)

],[],[ 5555 jkkjjkjk

________________________________________________________________________ ((Mathematica)) We use the following Mathematica program to evaluate the properties of Dirac maticres.

9

Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

g1

1 0 0 00 1 0 00 0 1 00 0 0 1

;

Gd , : g1 1, 1 ;

Gu , : g1 1, 1 ;

Gum Table Gu , , , 0, 3, 1 , , 0, 3, 1 ;

Gdm Table Gd , , , 0, 3, 1 , , 0, 3, 1 ;

x PauliMatrix 1 ;

y PauliMatrix 2 ;

z PauliMatrix 3 ;

I2 IdentityMatrix 2 ;

I4 IdentityMatrix 4 ;

x KroneckerProduct x, x ;

y KroneckerProduct x, y ;

z KroneckerProduct x, z ;

u0 KroneckerProduct z, I2 ;

ux u0. x Simplify;

uy u0. y Simplify;

uz u0. z Simplify; ; u 0 u0; u 1 ux; u 2 uy;

u 3 uz ; u 5 u0 . ux. uy. uz;

d : Sum Gd , u , , 0, 3, 1 ;

u , :2

u . u u . u ;

d , :2

d . d d . d ;

d 5 d 3 . d 2 . d 1 . d 0 ; u 3 u 1, 2 ; u 2 u 3, 1 ;

u 1 u 2, 3 ; u 1 x; u 2 y; u 3 z;

u 0 ;

10

u 0 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 0 . u 0 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

u 1 . u 1 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

11

u 2 . u 2 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 3 . u 3 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 5 MatrixForm

0 0 1 00 0 0 11 0 0 00 1 0 0

4Sum Signature a0, a1, a2, a3

u a0 . u a1 . u a2 . u a3 , a0, 0, 3, 1 ,

a1, 0, 3, 1 , a2, 0, 3, 1 , a3, 0, 3, 1

MatrixForm

12

0 0 1 00 0 0 11 0 0 00 1 0 0

u 5 . u 5 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 5 . u 1 u 1 . u 5 MatrixForm

0 0 0 00 0 0 00 0 0 00 0 0 0

u 5 . u 2 u 2 . u 5 MatrixForm

0 0 0 00 0 0 00 0 0 00 0 0 0

13

u 5 . u 3 u 3 . u 5 MatrixForm

0 0 0 00 0 0 00 0 0 00 0 0 0

u 5 . u 0 u 0 . u 5 MatrixForm

0 0 0 00 0 0 00 0 0 00 0 0 0

d 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

d 2 MatrixForm

0 0 00 0 00 0 0

0 0 0

14

d 3 MatrixForm

0 0 1 00 0 0 11 0 0 00 1 0 0

d 5 MatrixForm

0 0 1 00 0 0 11 0 0 00 1 0 0

Transpose d 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

u 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

15

Transpose d 2 MatrixForm

0 0 00 0 00 0 0

0 0 0

u 2 MatrixForm

0 0 00 0 00 0 0

0 0 0

Inverse d 2 MatrixForm

0 0 00 0 00 0 0

0 0 0

Sum d . u , , 0, 3, 1 MatrixForm

4 0 0 00 4 0 00 0 4 00 0 0 4

16

Tr u 5

0

Tr u 5 . u 0 . u 1 . u 2 . u 3

4

Tr u 1 . u 2 u 2 . u 1 MatrixForm

0

u 1 . u 0 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

u 0 . u 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

17

u 2 . u 0 MatrixForm

0 0 00 0 00 0 0

0 0 0

u 3 . u 0 MatrixForm

0 0 1 00 0 0 11 0 0 0

0 1 0 0

u 1 . u 2 . u 3 MatrixForm

0 0 00 0 0

0 0 00 0 0

u 1 . u 2 MatrixForm

0 0 00 0 00 0 00 0 0

18

u 2 . u 3 MatrixForm

0 0 00 0 0

0 0 00 0 0

u 3 . u 1 MatrixForm

0 1 0 01 0 0 00 0 0 10 0 1 0

u 1 . u 2 MatrixForm

0 0 00 0 00 0 00 0 0

u 0 . u 2 . u 3 MatrixForm

0 0 00 0 0

0 0 00 0 0

19

u 0 . u 3 . u 1 MatrixForm

0 1 0 01 0 0 00 0 0 10 0 1 0

u 0 . u 1 . u 2 MatrixForm

0 0 00 0 00 0 00 0 0

u 0 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

u 3 MatrixForm

0 0 1 00 0 0 11 0 0 0

0 1 0 0

20

u 0, 1 MatrixForm

0 0 00 0 00 0 0

0 0 0

u 0, 2 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

u 0, 3 MatrixForm

0 0 00 0 0

0 0 00 0 0

u 1, 2 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

21

u 2, 3 MatrixForm

0 1 0 01 0 0 00 0 0 10 0 1 0

u 3, 1 MatrixForm

0 0 00 0 0

0 0 00 0 0

d 0, 2 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

Transpose u 1 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

22

u 0 . u 1 . u 0 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

Transpose u 2 MatrixForm

0 0 00 0 00 0 0

0 0 0

u 0 . u 2 . u 0 MatrixForm

0 0 00 0 00 0 0

0 0 0

d 0 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

23

d 0, 1 MatrixForm

0 0 00 0 00 0 0

0 0 0

d 0, 2 MatrixForm

0 0 0 10 0 1 00 1 0 01 0 0 0

d 0, 3 MatrixForm

0 0 00 0 0

0 0 00 0 0

d 1, 2 MatrixForm

1 0 0 00 1 0 00 0 1 00 0 0 1

24

d 2, 3 MatrixForm

0 1 0 01 0 0 00 0 0 10 0 1 0

d 3, 1 MatrixForm

0 0 00 0 0

0 0 00 0 0

top related