dirac experiment (ps212)

Post on 06-Feb-2016

37 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

DIRAC experiment (PS212). A.Benelli. JINR, Zurich University. MESON 2012 Conference, Krakov , June, 2012. DIRAC collaboration. CERN. Tokyo Metropolitan University. Czech Technical University. IFIN-HH. Institute of Physics ASCR. JINR. Nuclear Physics Institute ASCR. - PowerPoint PPT Presentation

TRANSCRIPT

DIRAC experiment (PS212)

MESON 2012 Conference, Krakov, June, 2012.

A.Benelli

JINR, Zurich University

CERN

Kyoto University

Bern University

KEK

Santiago de Compostela University

University of MessinaIHEP

INFN-Laboratori Nazionali di Frascati

SINP of Moscow State University

JINR

Nuclear Physics Institute ASCR

IFIN-HH

Institute of Physics ASCR

Tokyo Metropolitan University

Czech Technical University

DIRAC collaboration

Zurich University Kyoto Sangyou University

Kp :

1-loop approx. a1/2

= 0.19 + 0.02 a3/2 = -0.05 + 0.02

a1/2- a3/2 = 0.238+-0.002 P. Büttiker et al. 2004

2-loop approx. a1/2- a3/2

= 0.267

Roy-Steiner equations :

a1/2- a3/2 = 0.269 + 0.015

pp :

a0 = 0.220 + 0.005a2 = -0.0444 + 0.0010

a0 – a2 = 0.265 + 0.004

ChPT predicts s-wave scattering lengths:

G. Colangelo et al., Nucl. Phys. B 603 (2001) 125

V.Bernard, N. Kaiser, U. Meissner 1991

J. Bijnens, P.P. Donthe, P.Talavera 2004

P. Buttiker et al 2004

t = (2.9 + 0.1) fs

t = (3.7 + 0.4) fs

•App lifetime measurement

•observation of Kp atoms and their lifetime measurement

•long lived atoms observation

The main DIRAC aim is the accurate measurement of pp scattering lenghts and the first measurement of pk scattering lenghts

Modifided parts MDC - microdrift gas chambers, SFD - scintillating fiber detector, IH – ionization hodoscope. DC - drift chambers , VH – vertical hodoscopes, HH – horizontal hodoscopes, Ch – nitrogen Cherenkov , PSh - preshower detectors , Mu - muon detectors

5

Upgraded DIRAC setup

DIRAC setup

target

DCstarget

-

SFD

magnet

p (24 GeV)

PS

IH

p

A2π

π+

π−

(nA)

(NA)

VH HH

MDC

p π−

π+

,,,…

(NCC)

Coulomb pairs

π+

π0

Accidental pairs

pπ−

π+

π+η, η’,…

Non-Coulomb pairs

(NNC)

p π−

π+p

(NACC)

π0

pπ−

π+η, η’,…

(NCC)

Coulomb pairs

X

K

pp

Micro Drift ChambersScintillation fibres detector

Drift chambersIonisation Hodoscope

TRACKING (2003: GEM-MSGC)

DC1:2x80x40 cmDC2: X,Y 80x40 cmDC3: X,Y 112x40 cmDC4: X,Y,X,Y 128x40cmBoth arms : 2016 chAnode pitch: 10mmCell:10x10cmCathode 20 mmcarbon-coated mylarAnode wires: 50 mmCopper-beryllium alloyDrift velocity: 50 mm/nsAmplitude: 1 mAPulse width: 20 nsResolution: 90 mm

18 planes : X, Y, U Area: 80x80 mmGas mixture: Ar(0.33)+ iC4H10(0.66)+H2O(0.01)

Anode pitch: 2.5 mm32 wires in a planeSell size: 2.5x2 mmDrift time: 26 nsTime resolution < 1nsSpace resolution < 80mm 2 tracks resolution <200mmRead-out time < 3ms

Trigger requests tracks coplanarity

Vertical Hodoscope

Horizontal Hodoscope

nA = 21227 + 407

Published results on π π atom: lifetime & scattering length

DIRAC data

t1s (10-15s)

value stat syst theo* tot

|a0 – a2|

value stat syst theo* totReference

2001 PL B 619 (2005) 50

2001-03 PL B 704 (2011) 24

91.2 49.062.0

264.0

0.0200.033

15.3 28.026.0

2533.0

0.01110.0106

NA48 K-decaya0 – a2

value stat syst theo totReference

2009 K3p EPJ C64 (2009) 589

2010 Ke4 & K3p EPJ C70 (2010) 6350015.00020.02639.0

* theoretical uncertainty included in systematic error

45.038.0

19.049.0

20.019.0

20.018.0

017.0020.0

022.0009.0

0072.00077.0

0078.00080.0

0088.00029.00048.02571.0

pp and kp geometrical acceptance

p

p

p

k

Nitrogen Counter

Heavy Gas

Aerogel

Cherenkov detectors

(1.008)p>1.1GeV(1.015)p>0.9GeV

Electron response

Pion response

Light vs momentum

Heavy Gas Cerenkov detector

Aerogel Aerogel Cerenkov detector

n=1.008 module

n=1.015 module

kaons

protons

t > 0.8 fs

nApk = 173+54 3.2 s

90% CL

Preshower detector

Cut efficiency :12.5% e+e- 97.5% pp

e+e- subtraction 97.8% pp

π-K+ and π+K- prompt pairs

19

Run 2008-2010, statistics with low and medium background (⅔ of all statistics). Point-like production of all particles. The e+e‒ background was not subtracted.

Coulomb pairs

Atomic pairs

non-Coulomb pairs

5.3 s

26% relative error on |a1/2-a3/2|

π+π‒ prompt pairs

20

Run 2008-2010, statistics with low and medium background (⅔ of all statistics). Point-like production of all particles. The e+e‒ background was not subtracted.

Coulomb pairs

Atomic pairs

non-Coulomb pairsCoulomb pairs

Atomic pairs

non-Coulomb pairs

Long lived atoms

In order to measure an other combination of scattering length : 2a0+a2

2011-2012 data taking

App & CC and NC

The A2π decay in the p-state is forbidden by angular momentum conservation. The lifetime of the A2π atom in the 2p state (τ2p=1.17 ·10-11 s) is determined by the 2p–1s radiative transition with a subsequent annihilation from 1s state (τ1s=3 ·10-15 s): π+ + π- π0 + π0

*

2010-2011 : Production of A2p in Beryllium target

Distribution over |QL| of p+p- pairs collected in 2010-2011 with Beryllium target

with the cut QT<1 MeV/c. Experimental data (points with errors) have been fittedby a sum of simulated CC and NC pairs (dashed line).

Produced atoms normalized on the proton flux : NA2p = (5.1 + 0.5) x 10 -14

Simulation of the permanent magnet at the target

Simulated atomic pairs from long lived atoms(light area) over QY above the background of pp pairs produced in the Beryllium target with cuts |QX, QL|<1MeV/c (hatched area).On the left side without the magnet and on the right with the magnet used during 2011.

Atomic pairs from long lived atoms

p

labB

z

x

y

24

12

Pairs generated after magnet

Pairs generated on Be target before magnet

1

2

2011 data : Experimental distribution of e+e- over QY

• 2 new magnets: Sm2Co17, high resistivity against radiation, B=0.26T, expected signal > 9 sigma.

• New retracting device allows to replace magnet fast.

Magnet for 2012 run

BLUE … magnet yokeGREY … magnet polesRED … magnet shimmingPURPLE … Pt foil

Energy splitting in theory

The observation of ππ atom long-lived states opens the future possibility to measure the energy difference between ns and np states DE(ns-np) and the value of ππ scattering lengths |2a0+a2|.

Electromagnetic corr.

D Eem 2s-2p = -0.012

eV

The lifetime of the np-states is about 103 larger than the ns-states, so it is possible to measure the energy difference of these levels by exerting an electric field (Stark effect) on the atom and tracking the field dependence of the decay probability.The influence of an magnetic field on the A2π atom lifetime opens the possibility to measure the splitting between 2s and 2p levels.

DE in practice .. observation method

Pt foil

SPS (450 GeV) : yield of A2p and Akp will increase of a factor 20 per proton-nucleus interaction.

Thank you for your attention

top related