digital integrated circuits lecture 15: nonideal...

Post on 25-Feb-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 1

Digital Integrated CircuitsLecture 15: NonidealTransistors

Chih-Wei Liu

VLSI Signal Processing LAB

National Chiao Tung University

cwliu@twins.ee.nctu.edu.tw

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 2

Outline

Transistor I-V ReviewNonideal Transistor Behavior

Velocity SaturationChannel Length ModulationBody EffectLeakageTemperature Sensitivity

Process and Environmental VariationsProcess Corners

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 3

Ideal Transistor I-V

Shockley 1st order transistor models

( )2

cutoff

linear

saturatio

0

2

2n

gs t

dsds gs t ds ds dsat

gs t ds dsat

V VVI V V V V V

V V V V

β

β

⎧⎪ <⎪⎪ ⎛ ⎞= − − <⎜ ⎟⎨ ⎝ ⎠⎪⎪

− >⎪⎩

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 4

Ideal vs. Simulated nMOS I-V Plot

180 nm TSMC process

Ideal Modelsβ = 155(W/L) μA/V2

Vt = 0.4 VVDD = 1.8 V

Ids (μA)

Vds0 0.3 0.6 0.9 1.2 1.5 1.8

100

200

300

400

Vgs = 0.6Vgs = 0.9

Vgs = 1.2

Vgs = 1.5

Vgs = 1.8

0 V ds

0 0 .3 0 .6 0 .9 1 .2 1 .5

V g s = 1 .8

Ids (μA )

0

50

100

150

200

250

V g s = 1 .5

V g s = 1 .2

V g s = 0 .9

V g s = 0 .6

BSIM 3v3 SPICE models

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 5

Simulated nMOS I-V Plot

180 nm TSMC processBSIM 3v3 SPICE modelsWhat differs?

Less ON currentNo square lawCurrent increasesin saturation

Vds

0 0.3 0.6 0.9 1.2 1.5

Vgs = 1.8

Ids (μA)

0

50

100

150

200

250

Vgs = 1.5

Vgs = 1.2

Vgs = 0.9

Vgs = 0.6

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 6

Velocity Saturation

We assumed carrier velocity is proportional to E-fieldv = μElat = μVds/L

At high fields, this ceases to be trueCarriers scatter off atomsVelocity reaches vsat

Electrons: 6-10 x 106 cm/sHoles: 4-8 x 106 cm/s

Better model

Esat00

slope = μ

Elat

ν

2Esat3Esat

νsat

νsat / 2

latsat sat

lat

sat

μ μ1

Ev v EEE

= ⇒ =+

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 7

Vel Sat I-V Effects

Ideal transistor ON current increases with VDD2

Velocity-saturated ON current increases with VDD

Real transistors are partially velocity saturatedApproximate with α-power law modelIds ∝ VDD

α

1 < α < 2 determined empirically

( ) ( )2

2

ox 2 2gs t

ds gs t

V VWI C V VL

βμ−

= = −

( )ox maxds gs tI C W V V v= −

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 8

α-Power Model

Ids (μA)

Vds0 0.3 0.6 0.9 1.2 1.5 1.8

100

200

300

400

Vgs = 0.6Vgs = 0.9

Vgs = 1.2

Vgs = 1.5

Vgs = 1.8

0

α-lawSimulated

Shockley

0 cutoff

linear

saturation

gs t

dsds dsat ds dsat

dsat

dsat ds dsat

V VVI I V VV

I V V

⎧ <⎪⎪= <⎨⎪⎪ >⎩

( )

( ) / 22dsat c gs t

dsat v gs t

I P V V

V P V V

α

α

β= −

= −

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 9

Channel Length Modulation

Reverse-biased p-n junctions form a depletion region

Region between n and p with no carriers

Width of depletion Ld region grows with reverse bias

Leff = L – Ld

Shorter Leff gives more current

Ids increases with Vds

Even in saturation n+

p

GateSource Drain

bulk Si

n+

VDDGND VDD

GND

LLeff

Depletion RegionWidth: Ld

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 10

Chan Length Mod I-V

λ = channel length modulation coefficientnot feature sizeEmpirically fit to I-V characteristics

( ) ( )21

2ds gs t dsI V V Vβ λ= − +

Ids (μA)

Vds0 0.3 0.6 0.9 1.2 1.5 1.8

100

200

300

400

Vgs = 0.6Vgs = 0.9

Vgs = 1.2

Vgs = 1.5

Vgs = 1.8

0

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 11

Body Effect

Vt: gate voltage necessary to invert channelIncreases if source voltage increases because source is connected to the channelIncrease in Vt with Vs is called the body effect

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 12

Body Effect Model

φs = surface potential at threshold

Depends on doping level NA

And intrinsic carrier concentration ni

γ = body effect coefficient

( )0t t s sb sV V Vγ φ φ= + + −

2 ln As T

i

Nvn

φ =

sioxsi

ox ox

2q2q A

A

Nt NCε

γ εε

= =

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 13

OFF Transistor Behavior

What about current in cutoff?Simulated resultsWhat differs?

Current doesn’t go to 0 in cutoff

Vt

Sub-threshold

Slope

Sub-thresholdRegion

SaturationRegion

Vds = 1.8

Ids

Vgs

0 0.3 0.6 0.9 1.2 1.5 1.8

10 pA100 pA

1 nA

10 nA

100 nA1 μA

10 μA100 μA

1 mA

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 14

Leakage Sources

Subthreshold conductionTransistors can’t abruptly turn ON or OFF

Junction leakageReverse-biased PN junction diode current

Gate leakageTunneling through ultrathin gate dielectric

Subthreshold leakage is the biggest source in modern transistors

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 15

Subthreshold Leakage

Subthreshold leakage exponential with Vgs

n is process dependent, typically 1.4-1.5

0e 1 egs t ds

T T

V V Vnv v

ds dsI I− −⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠

2 1.80 eds TI vβ=

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 16

DIBL

Drain-Induced Barrier LoweringDrain voltage also affect Vt

High drain voltage causes subthreshold leakage to ________.

ttdsVVVηt t dsV V Vη′ = −

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 17

DIBL

Drain-Induced Barrier LoweringDrain voltage also affect Vt

High drain voltage causes subthreshold leakage to increase.

ttdsVVVηt t dsV V Vη′ = −

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 18

Junction Leakage

Reverse-biased p-n junctions have some leakage

Is depends on doping levelsAnd area and perimeter of diffusion regionsTypically < 1 fA/μm2

e 1D

T

Vv

D SI I⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠

n well

n+n+ n+p+p+p+

p substrate

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 19

Gate Leakage

Carriers may tunnel thorough very thin gate oxidesPredicted tunneling current (from [Song01])

Negligible for older processesMay soon be critically important

VDD

0 0.3 0.6 0.9 1.2 1.5 1.8

JG (A

/cm2

)

10-9

10-6

10-3

100

103

106

109

tox

0.6 nm0.8 nm

1.0 nm1.2 nm

1.5 nm

1.9 nm

VDD trend

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 20

Temperature Sensitivity

Increasing temperatureReduces mobilityReduces Vt

ION decreases with temperatureIOFF increases with temperature

Vgs

dsI

increasingtemperature

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 21

So What?

So what if transistors are not ideal?They still behave like switches.

But these effects matter for…Supply voltage choice

Logical effort

Quiescent power consumption

Pass transistors

Temperature of operation

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 22

Parameter Variation

Transistors have uncertainty in parametersProcess: Leff, Vt, tox of nMOS and pMOSVary around typical (T) values

Fast (F)Leff: shortVt: lowtox: thin

Slow (S): oppositeNot all parameters are independentfor nMOS and pMOS

nMOS

pMO

S

fastslow

slow

fast

TT

FF

SSFS

SF

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 23

Environmental Variation

VDD and T also vary in time and spaceFast:

VDD: ____T: ____

70 C1.8TS

FTemperatureVoltageCorner

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 24

Environmental Variation

VDD and T also vary in time and spaceFast:

VDD: highT: low

70 C1.8T125 C1.62S

0 C1.98FTemperatureVoltageCorner

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 25

Process Corners

Process corners describe worst case variationsIf a design works in all corners, it will probably work for any variation.

Describe corner with four letters (T, F, S)nMOS speed

pMOS speed

Voltage

Temperature

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 26

Important Corners

Some critical simulation corners include

Pseudo-nMOS

Subthresholdleakage

Power

Cycle time

TempVDDpMOSnMOSPurpose

DIC-Lec15 cwliu@twins.ee.nctu.edu.tw 27

Important Corners

Some critical simulation corners include

??FSPseudo-nMOS

SFFFSubthresholdleakage

FFFFPower

SSSSCycle time

TempVDDpMOSnMOSPurpose

top related