diffuse scattering• crystals - barium iv: self-hosting incommensurate structure -...

Post on 22-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DIFFUSE SCATTERING

Hercules 2012

Pascale Launois

Laboratoire de Physique des Solides (UMR CNRS 8502)

Bât. 510

Université Paris Sud, 91 405 Orsay CEDEX

FRANCE

pascale.launois@u-psud.fr

OUTLINE __________________________________________________________________________________________________________________

1. Introduction

General expression for diffuse scattering

Diffuse scattering/properties

A brief history

2. 1D chain - First kind disorder

Simulations of diffuse scattering/local order

Analytical calculations

- Second kind disorder

3. Diffuse scattering analysis

General rules

To go further

Note: static or dynamic origin…

4. Examples • Crystals

- Barium IV: self-hosting incommensurate structure

- Nanotubes@zeolite: structural characteristics of nanotubes from diffuse scattering analysis

- DIPSF4(I3)0.74: a one-dimensional liquid

- Graphene

• Fibers

- DNA: structure from diffuse scattering pattern

• Powders

- C60 fullerenes

- Turbostratic graphite

- Peapods C60@single walled carbon nanotube

1. INTRODUCTION - General expression for diffuse scattering

● No long range order : second-kind disorder

Average structure

ORDER

Bragg peaks

2-body correlations

DISORDER

Diffuse scattering

● Average long range order : first-kind disorder

( ( ( ( mRsi

mn

nnmnn

lkh

lkhn

n esFFFGssFV

sI 22

,,

,,

2

*1

Fn = FT(electronic density within a unit cell ‘n’)

(

m

Rsi

tnmnn

tmn

RRsi

mn

Rsi

nmmnn eFFeFeFsI 2

,

*

,

)(2*2

Variable omitted

here after

P. Launois, S. Ravy and R. Moret, Phys. Rev. B 52 (1995) 5414

s

I(s)

x104

Diffuse scattering :

not negligible with respect to

Bragg peaks

Conservation law :

(Diffuse + Bragg) (s)

= r(r)2

1. INTRODUCTION - General expression for diffuse scattering

From Welberry and Butler, J. Appl. Cryst. 27 (1994) 205

(a) (b)

Same site occupancy (50%)

Same two-site correlations (0)

(a): completely disordered;

(b): large three-site correlations

Same scattering patterns!

Scattering experiments:

probe 2-body correlations

Ambiguities can exist

=> Use chemical-physical constraints

1. INTRODUCTION - General expression for diffuse scattering

Diffuse scattering defects, disorder, local order, dynamics

Physical properties

Lasers

Semiconductor properties (doping)

Hardness of alloys (Guinier-Preston zones)

Plastic deformation of crystals (defect motions)

Ionic conductivity (migration of charged lattice defects)

Geosciences Related to growth conditions

Biology

biological activity of proteins: intramolecular activity...

1. INTRODUCTION - Diffuse scattering vs properties

A few dates ...

•1918 : calculation of diffuse scattering for a disordered binary alloy (von Laue)

•1928 : calculation of scattering due to thermal motions (Waller)

•1936 : first experimental results for stacking faults (Sykes and Jones)

•1939 : measurement of scattering due to thermal motion

Diffuse scattering measurements and analysis : no routine methods

Many recent progresses :

- power of the sources (synchrotron...)

- improvements of detectors

- computer simulations

1. INTRODUCTION - A brief history

2. 1D CHAIN LATTICE –1st kind of disorder-simulations _____________________________________________________________________________________________________________________

Program ‘Diff1D’

to simulate diffuse scattering for a 1D chain :

Substitution disorder

Atoms and vacancies on an infinite 1D periodic lattice (concentrations=1/2).

The local order parameter p is the probability of ‘atom-vacancy’ nearest-neighbors pairs.

Displacement disorder

Atoms on an infinite 1D periodic lattice,

with displacements (+u) or (-u) (same concentration of atoms shifted right and left).

The local order parameter p is the probability of ‘(+u)/(-u)’ nearest-neighbors pairs.

Size effect

Atoms and vacancies : local order + size effects (interatomic distance d=>de.

DIFF1D (program : D. Petermann, P. Launois, LPS)

2. 1D CHAIN LATTICE –1st kind of disorder-simulations _____________________________________________________________________________________________________________________

QUESTIONS :

- What parameter p would create a random vacancy distribution?

- Describe and explain the effect of correlations (diffuse peak positions and widths).

- What is the main difference between substitution and displacement disorder for the

diffuse scattering intensity?

- Size effect : compare diffuse scattering patterns with substitutional disorder and with

displacement disorder correlated with substitutional disorder. Discuss the cases e>0 and

<0.

- Simulate the diffuse scattering above a second order phase transition, when lowering

temperature.

2. 1D CHAIN LATTICE –1st kind of disorder-simulations _____________________________________________________________________________________________________________________

ANSWERS :

- Random : p=1/2

- p>1/2 : positions of maxima = (2n+1) a*/2, n integer (ABAB: doubling of the period)

p<1/2 : positions of maxima = n a* (small domains: AAAA, BBBBB)

Width (correlation length)-1

Substitution, p=0.6 Substitution, p=0.75

Displacements, p=0.75

Substitution disorder, p=1/2

2. 1D CHAIN LATTICE –1st kind of disorder-simulations _____________________________________________________________________________________________________________________

-Substitution disorder: intensity at low s.

Displacement disorder: no intensity around s=0.

-Size effect : intensity asymmetry around s=na* (n integer).

For e>0: atom-atom distance larger than vacancy-vacancy distance,

atom scattering factor > that of a vacancy (0) => positive contribution just before na*,

negative contribution just after na*.

s a*

ID e=0

e>0

2. 1D CHAIN LATTICE –1st kind of disorder-simulations _____________________________________________________________________________________________________________________

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

Analytical calculations

A atoms: red, B: purple

cA=cB=1/2

p= probability to have a ‘A(red)-B(purple)’ pair

a. Substitution disorder

4

2

BA ff

With am=1-2pm, pm being the probability

to have a pair AB at distance (ma);

p0=0, p1=p.

am : Warren-Cowley coefficients

)2cos(214

0

2

smaff

Im

m

BA

D a

( ( ( ( smai

mnnnmnn

hnn esFFFahssF

asI

222

*/1

Demonstration

22 : BABA

An

fffffFFAn

2

)(

2 : BABA

Bn

fffffFFBn

A(n)A(n+m) B(n)A(n+m) B(n)B(n+m)

A(n)B(n+m)

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

( )**)((*2

mnmnnnnnnmnn FFFFsFFF

(

mmmm

BA

nnnmnn ppppff

sFFF2

1

2

1)1(

2

1)1(

2

1

4*

2

2

mp

n n+m

( m

BA

nnnmnn

ffsFFF a

4*

22

mm p21a

mmm aaa ,0;10

(

)2cos(214

)2exp(4

*

0

2

2

22

smaff

smaiff

esFFF

m

m

BA

m

m

BAsmai

mnnnmnn

a

a

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

mp

ppppprobprobprobprobp mmAB

m

AABB

m

ABm )1()1( 11

1111

( mm

m p 121 aa

2

11

2

1

2

)2cos(21

1

4 aa

a

sa

ffI

BA

D

X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, A. Guinier, Dover publications.

Interactions between nearest neighbors only :

)2exp(1

1)2exp()2exp(

10

1

0 saisaismai

m

m

m

ma

aa

1)2exp(1

1)2exp()2exp(

11

1

1

saisaismai

m

m

m

ma

aa

n n+m

2

11

2

1

2

)2cos(21

1

4 aa

a

sa

ffI

BA

D

p=1/2 : a1=0 : Laue formula

p>1/2 : a1<0 : positions of maxima = (2n+1) a*/2, n integer

P<1/2 : a1>0 : positions of maxima = n a*

A=B : no disorder : no diffuse scattering

4

2

BA

D

ffI

Formula used in Diff1D

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

u -u

b. Displacement disorder

2

11

2

1

2

)2cos(21

1

4 aa

a

sa

ffI

BA

D

with and sui

AA eff 2 sui

AB eff 2

( 2

11

2

122

)2cos(21

12sin

aa

a

sasufI AD

ID(s=0) =0

u=0 : no disorder : no diffuse scattering

Formula used in Diff1D

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

3. Size effect

Combination of correlated displacement and substitution disorder

)2sin(22)2cos(214 00

2

smasmasmaff

Im

m

m

m

BA

D a

mst neighbors:

Mean-distance=ma

)1(),1(),1( mAB

mAB

mBB

mBB

mAA

mAA madmadmad eee

mAB

mBB

mAA

mABm

AB pp

2))(1( ee

e

( ( AA

AB

ABB

AB

B

ff

f

ff

feaea 111 11

Warren, X-Ray Diffraction, Addison-Wesley pub.

)...2exp()21())1(2exp( smaismaismai mAA

mAA ee

( ( msdi

mnnnmnnD esFFFsI

22

*

fB>fA

eBB>0 1>0

eAA<0

-1sin(2sa) >0 for s~<na, <0 for s~>na

s a*

ID eij=0

Size effect

Formula used in Diff1D : m=1

2. 1D CHAIN LATTICE –1st kind of disorder-calculations _____________________________________________________________________________________________________________________

B A

Second-kind disorder

No long range order

X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, A. Guinier, Dover publications.

rA rB

cA=cB=1/2, p=1/2

a=(rA+rB)/2

(in a* unit)

Cumulative fluctuations in distance Peak widths increase with s

2. 1D CHAIN LATTICE –2nd kind of disorder _____________________________________________________________________________________________________________________

1D liquid:

* distribution function h1(z) of the first neighbors of an arbitrary reference unit

* hm(z)= h1(z)* h1(z) * …* h1(z)

Total distribution function: S(z(zSm0(hm(z)+ h-m(z))

Fourier transform: 1+2 Sm>0(Hm(s)+ H*m(s))=1+2 Re(H(s)/(1-H(s)))

where H(s)=FT(h1)

Gaussian liquid: h1(z)~exp(-(z-d)2/2s2) : H(s)~exp(-22s2s2)exp(i2sd)

I(s)~sinh(42s2s2/2)/ (cosh(42s2s2/2)-cos(2sd))

See e.g. E. Rosshirt, F. Frey, H. Boysen and H. Jagodzinski, Acta Cryst. B 41, 66 (1985)

2. 1D CHAIN LATTICE –2nd kind of disorder-calculations _____________________________________________________________________________________________________________________

3. DIFFUSE SCATTERING ANALYSIS _____________________________________________________________________________________________________________________

A few properties of the diffuse scattering

• WIDTH

- 1st kind disorder : width1/(correlation length)

modulations larger than Brillouin Zone : no correlations;

diffuse planes : 1D ordered structures with no correlations;

diffuse lines : disorder between ordered planes

- Width increases with s: 2nd kind of disorder

• POSITION

local ordering in direct space (AAAA, ABABAB...)

• INTENSITY

Scattering at small s : contrast in electronic density (substitution disorder...)

No scattering close to s=0 : displacements involved

Extinctions => displacement directions... I~f(s.u) : s u I=0

To go further and understand/evaluate microscopic interactions ...

calculations.

-Analytical.

Modulation wave analysis (for narrow diffuse peaks),

Correlation coefficients analysis (for broad peaks).

-Numerical.

Model of interactions (with chemical and physical constraints)

Direct space from Monte-Carlo or molecular dynamics simulations;

Or use of mean field theories ...

Scattering pattern.

3. DIFFUSE SCATTERING ANALYSIS _____________________________________________________________________________________________________________________

3. DIFFUSE SCATTERING ANALYSIS _____________________________________________________________________________________________________________________

Diffuse scattering origin can be static or dynamic

4. EXAMPLES - Barium IV _____________________________________________________________________________________________________________________

From R.J. Nelmes, D.R. Allan, M.I. McMahon and S.A. Belmonte, Phys. Rev. Lett. 83 (1999) 4081

l: -3 -2 -1 0 1 2 3 Tetragonal symmetry

Diffuse planes l/3.4Å

Synchrotron radiation Source,

Daresbury Lab.

and laboratory source

Diffuse planes in reciprocal space in direct space ?

No diffuse scattering in the plane l=0 in direct space ?

Diffuse planes in reciprocal space

Disorder between chains in direct space

No diffuse scattering in the plane l=0 displacements along the chain axes

)()( usfsID

No contribution for s u

4. EXAMPLES - Barium IV _____________________________________________________________________________________________________________________

5.5 GPa 12.6 GPa

Phase I

bcc

Phase II

hcp

Phase IV

Tetragonal inc.

45 GPa

Phase V

hcp

Tetragonal ‘host’, with ‘guest’ chains in

channels along the c axis of the host. These

chains form 2 different structures, one well

crystallized and the other highly disordered

and giving rise to strong diffuse scattering.

The guest structures are incommensurate

with the host.

An incommensurate host-guest structure in

an element!

4. EXAMPLES - Barium IV _____________________________________________________________________________________________________________________

Diffuse

Scattering

zeolite

DS nanotubes

c*

From P. Launois, R. Moret, D. Le Bolloc’h, P.A. Albouy, Z.K. Tang, G. Li and J.Chen,

Solid State Comm. 116 (2000) 99; ESRF Highlights 2000, p. 67

Diffuse scattering in the plane l=0 close to the origin => ?

4. EXAMPLES - Nanotubes inside zeolite _____________________________________________________________________________________________________________________

Zeolite AlPO4-5 (AFI) Nanotubes inside the zeolite channels

Aluminium

or phosphor

Oxygen

Intensity at small s Contrast in electronic density :

partial occupation of the channel - different between channels

Schematic drawing of the nanotubes electronic density

projected in the z=0 plane

4. EXAMPLES - Nanotubes inside zeolite _____________________________________________________________________________________________________________________

Small s, l=0: ID(s)fC2.(J0(2sF/2))2

Nanotubes with F4Å. The smallest nanotubes. Vs superconductivity?

Tang et al., Science 292, 2462 (2001)

4

2

BA

D

ffI

Laue formula :

F

s

s

4. EXAMPLES - Nanotubes inside zeolite _____________________________________________________________________________________________________________________

Tetraphenyldithiapyranylidene iodine C34H24I2.28S2

From P.A. Albouy, J.P. Pouget and H. Strzelecka, Phys. Rev. B 35 (1987) 173

4. EXAMPLES - DIPSF4(I3)0.75

_____________________________________________________________________________________________________________________

LURE (synchrotron)

c axis= horizontal

Diffuse scattering in planes l/(9.79Å)

l values

- Extinctions?

- Intensity distribution between the different diffuse planes?

- Widths of the diffuse planes?

4. EXAMPLES - DIPSF4(I3)0.75

_____________________________________________________________________________________________________________________

No intensity for l=0 displacement disorder along the chain axes

Widths of the diffuse planes increase with l

second-type disorder

One-dimensional liquid at Room Temperature

The most intense planes : l=3,4, 6 and 7 : due to the molecular

structure factor of the triiodide anions.

4. EXAMPLES - DIPSF4(I3)0.75

_____________________________________________________________________________________________________________________

3D ordered state below 182K

4. EXAMPLES - DIPSF4(I3)0.75

_____________________________________________________________________________________________________________________

4. EXAMPLES - Graphene

Electron

scattering

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth & S. Roth, Nature 446, 60 (2007)

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl,

Solid State Comm. 143 (2007) 101-109

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth & S. Roth, Nature

446, 60 (2007)

4. EXAMPLES - Structure of B-DNA

_____________________________________________________________________________________________________________________

B form of DNA in fiber

The structure of DNA

R. Franklin + J.D. Watson and F.H.C. Crick (1953)

I~<FB-DNA FB-DNA*

>

Gives the double helix shape

&

indicates its method of replication

4. EXAMPLES - Structure of B-DNA

_____________________________________________________________________________________________________________________

Angle inversely

related to helix radius

q

P Spacing

proportional

to 1/P

p

Pitch = P

Spacing

corresponds

to 1/p

meridian

4. EXAMPLES - Structure of B-DNA

_____________________________________________________________________________________________________________________

p=3.4Å

P=34Å

Extinction:

t0=3P/8

P=34Å

p=3.4Å

t0

P. Launois, S. Ravy and R. Moret, Phys. Rev. B 52 (1995) 5414

4. EXAMPLES – C60 powder

Fullerenes C60

Single crystal

Powder

W.A. Kamitakahara et al., Mat. Res. Soc. Symp. Proc. 270 (1992)167

3.45 Å

4. EXAMPLES – Turbostratic carbon

Random stacking of graphene layers

Turbostratic carbon

● Diffraction peaks (00l)

● Diffuse lines (hk)

0

2

4

6

8

10

0 5 Q (Å-1)

00 10 11 20 12 30 l

Powder

average

?

The smallest scattering

angle

The scattering angle

decreases

The scattering angle increases

again

2θMin

I

2θ 2θMin

Sawtooth peak :

● Symmetric (00l) peaks

● Sawtooth shaped (hk) reflections Powder

average

● Diffraction peaks (00l)

● Diffuse lines (hk)

0

2

4

6

8

10

0 5 Q (Å-1)

00 10 11 20 12 30 l

0 2 4 6 8 10 12 14 16

Q(Å-1)

(10

)

(00

2)

0 2 4 6 8 10 12 14 16

Q(Å-1)

4. EXAMPLES – Peapods

L

K. Hirahara et al.,

Phys. Rev. B (2001)

Qz=0

2/L

4/L

2/L

4/L

(Qz)

Powder average

→ sawtooth peak

0,60 0,65 0,70 0,75 0,80

Inte

nsity

Q(Å-1)

1D crystal

after powder average

2/L

0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80

Inte

nsity

Q(Å-1)

L=9.8A,sigma=0.1A

L=9.8A,sigma=0.5A

L=9.8A,sigma=1A

• 1D liquid

• Quantification of the increase of liquid fluctuations with increasing T

C. Bousige, S. Rols, P. Launois and collaborators (submitted)

For other examples, see e.g. the review articles:

- Interpretation of Diffuse X-ray Scattering via Models of Disorder,

T.R. Welberry and B.D. Butler, J. Appl. Cryst. 27 (1994) 205

- Diffuse X-ray Scattering from Disordered Crystals,

T.R. Welberry and B.D. Butler, Chem. Rev. 95 (1995) 2369

-Diffuse scattering in protein crystallography,

J.-P. Benoit and J. Doucetn Quaterly Reviews of Biophysics 28 (1995) 131

-Diffuse scattering from disordered crystals (minerals),

F. Frey, Eur. J. Mineral. 9 (1997) 693

- Special issue of Z. Cryst. on ‘Diffuse scattering’

Issue 12 (2005) Vol. 220

Free access: http://www.extenza-eps.com/OLD/loi/zkri

top related