density estimation techniques for charged particle...

Post on 17-Sep-2018

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Density Estimation Techniques for Density Estimation Techniques for Charged Particle Beams Charged Particle Beams 

BalBalšša Terzića TerzićBeam Physics and Astrophysics Group, NICADDBeam Physics and Astrophysics Group, NICADD

Northern Illinois University, USANorthern Illinois University, USA

Work done in collaboration with Work done in collaboration with Gabriele BassiGabriele Bassi

Cockcroft InstituteCockcroft Institute

Cockcroft Institute SeminarCockcroft Institute SeminarFebruary 26, 2009February 26, 2009

MotivationMotivation•  When a charged particle beam traverses a curved trajectory, beam's    self­interaction leads to coherent synchrotron radiation (CSR)

•  Beam's self­interaction has adverse effects:

•  Appreciable emittance degradation•  Microbunching instability which degrades beam quality   (major concern for FELs, which require bright electron beams)

•  Proper numerical modeling of CSR requires:

•  Point­to­point methods: solving the microscopic Maxwell's equation   (Lienard­Wiechert potentials) •  Mean field methods: solving Vlasov­Maxwell equation    (finite difference, finite element, Green's function, retarded potentials)

•  Possible simplifications to 3D CSR modeling:

•  1D line approximation (IMPACT, ELEGANT): probably too simplistic •  2D approximation: codes by Li 1998, Bassi et al. 2006

MotivationMotivation

•  Bassi's 2D CSR Vlasov­Maxwell code (original version):

•  Monte Carlo code: particle density sampled by particles

•  Particle density estimated analytically by a cosine expansion

•  Particle density evaluated on a finite grid and stored for evaluation   of retarded potentials  

•  Although accurate, the density estimation is quite time­consuming  

•  Here we present two alternative grid­based methods for particle   density estimation:

•  Truncated fast cosine transform on the grid

•  Wavelet­denoised approximation on the grid

● Outline of the current version of Bassi's 2D CSR code

● Grid representation– Particle deposition– Numerical noise in grid­based methods 

● Alternative method 1:  Fast cosine transform on the grid

● Alternative method 2:  Wavelet transform on the grid– Brief overview of wavelets– Wavelet denoising

● Comparison: the new methods Vs. the old– Spatial resolution– Accuracy – Smoothness– Efficiency

● Discussion of further work

● Summary

Outline of the TalkOutline of the Talk

● 2D Vlasov­Maxwell

● Self­consistent treatment

● Monte Carlo: particle density ρ(x,z) is sampled by N particles (Klimontovich distribution)

                                                           and then approximated by a Monte Carlo cosine expansion:

                                                 Ncx, N

cz: # of basis func. in x­ and z­coord.

where

● Computation of cnm 

scales as ~ O(NNcxN

cz)

● Self­fields are computed from the beam's history represented by cnm

(ti)

Outline of the Current Version of Bassi's CSR CodeOutline of the Current Version of Bassi's CSR Code

x , z =∑n=1

N cx

∑m=1

N cz

cnmn x m z

k y =1 if k=0k y=2 cos k y if k≠0

cnm=1N∑i=1

N

nx im zi

K x , z =∑i=1

N

x− x i z−zi δ(y): Dirac delta function

• – gridpoint location

NGP

CIC

Grid Representation: Particle DepositionGrid Representation: Particle Deposition

● Grid determined so as to tightlyenvelope all particles– Minimizing empty cells

optimal spatial resolution

● Grid resolution:– N

x : # of gridpoint in x­coord.

– Nz : # of gridpoint in z­coord.

– Ngrid

=Nx N

z  : # of nodes on grid

● Main particle deposition schemes:

– Nearest Grid Point (NGP) 

– Cloud­In­Cell (CIC) 

x – particle location

● Any N­body simulation will have numerical noise

● Sources of numerical noise in Particle­In­Cell (PIC) simulations:

– Graininess of the distribution function:  Nsimulation

<< Nphysical

– Discreteness of the computational domain:  and  given on a finite grid 

● Understanding the numerical noise is key to removing it

● For NGP, at each gridpoint, density dist. is Poissonian:                                     

                                                                                nj is the expected number in jth cell;    n integer

● For CIC, at each gridpoint, density dist. is contracted Poissonian:

                                             a=(2/3)(D/2)   0.82 (1D), 0.67 (2D), 0.54 (3D)  

Numerical Noise In Grid­Based MethodsNumerical Noise In Grid­Based Methods

P=n ! −1an j n e−an j

(For more details see Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201)

P=n ! −1n j n e−n j

Numerical Noise In Grid­Based MethodsNumerical Noise In Grid­Based Methods

● Global measure of error (noise) in depositing particles onto a grid:

where qi= (Q

total/N)n

i , Q

total total charge; N

grid number of gridpoints

● This error/noise estimate σ is crucial for optimal noise removal

● Signal with Poissonian noise can be transformed to the signal with Gaussian noise by Anscombe transformation:

                                                    YP = signal with Poissonian (multiplicative) noise

      YG = signal with Gaussian (additive) noise

● Less numerical noise   running simulations with more particles 

● Removing noise: – In Fourier space: simple truncation of higher frequencies– In wavelet space: judicious noise removal by wavelet thresholding

2=

1N grid

∑i=1

Ngrid

Var q i CIC2

=a2Qtotal

2

N Ngrid

Y G=2 Y P38

NGP2

=Qtotal

2

N N grid

● Once the particles have been deposited on the (Nx, N

z) grid:

1.  Apply forward Fast Cosine Transform (FCT)

2.  Keep only (1..Ncx, 1..N

cz) frequencies: filtering out higher frequencies

 (unlike Monte Carlo, no extra work for computing up to Nx, N

z modes)

3.  Apply inverse FCT 

● Filtering (truncation)

– Removes contribution from high order frequencies (simple denoising)

– Smoothens the distribution

– Imposes further limitation on spatial resolution

● FCT scales as O(Ngrid

) (independent of N)

– Much faster than Monte Carlo cosine expansion 

Alternative Method 1:Alternative Method 1:Fast Cosine Transform on the GridFast Cosine Transform on the Grid

● Wavelets: orthogonal basis composed of scaled and translated versions of the same localized mother wavelet ψ(x) and the scaling function ф(x):         

                                                            

● Discrete Wavelet Transfrom (DWT) iteratively separates scales

– O(MN) operation, M size of the wavelet filter, N size of the discrete signal

● Advantages:

– Simultaneous localization in both space and frequency (FFT only frequency)

– Compact representation of data, enabling compression (FBI fingerprints)

– Denoising: wavelets provide a natural setting for noise removal   denoised simulation    simulation with more particles

Brief Overview of WaveletsBrief Overview of Wavelets

f x =s000

0x ∑

i∑

jd i

ki

kx

ikx =2

k2 0

02 k x−i

Wavelet DenoisingWavelet Denoising● In wavelet space:

Signal    few large wavelet coefficients  cij

Noise    many small wavelet coefficients  cij

● Denoising by wavelet thresholding: If |c

ij|< T , set to c

ij =0   (choose threshold T carefully!)

● A great deal of study has been devoted to estimating optimal T  

 (   σ was estimated earlier)

Denoising factor:    

T=2 log N grid

Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201DF T =

Error original

Error denoised

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

ANALYTICAL Nppc

=3   SNR=2.02N

ppc=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

2D superimposed Gaussians on 256×256 grid

ANALYTICAL Nppc

=3   SNR=2.02N

ppc=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

2D superimposed Gaussians on 256×256 grid

ANALYTICAL Nppc

=3   SNR=2.02N

ppc=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

2D superimposed Gaussians on 256×256 grid

ANALYTICAL Nppc

=3   SNR=2.02 Nppc

=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

2D superimposed Gaussians on 256×256 grid

● denoising by wavelet thresholding:  if |cij|< T , set to 0  

ANALYTICAL Nppc

=3   SNR=2.02 Nppc

=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

● When the signal is known, one can compute Signal­to­Noise Ratio (SNR):

● SNR ~ √Nppc

            Nppc

: avg. # of particles per cell    Nppc 

= N/Ncells

2D superimposed Gaussians on 256×256 grid

● denoising by wavelet thresholding:  if |cij|< T , set to 0 

● Advantages:    ­  increase in SNR by c    c2 more particles (here c=8.3, c2=69)

 ­  compact storage in wavelet space  (in this example 79/65536: 0.12%) 

ANALYTICAL Nppc

=3   SNR=2.02 Nppc

=205  SNR=16.89

Wavelet Denoising and CompressionWavelet Denoising and Compression

SNR= ∑iq i2

∑iq i−q i

2

q i=exactq i=approx.

COMPACT:  only 0.12% of coeffs

WAVELET THRESHOLDING            DENOISEDN

ppc= 3    SNR = 16.83

COMPACT:  only 0.12% of coeffs

● Once the particles have been deposited on the (Nx, N

z) grid:

1. Apply forward Anscombe transformation 

2. Apply forward DWT

3. Remove numerical noise by wavelet thresholding

4. Apply inverse DWT 

5. Apply inverse Anscombe transformation

● Wavelet thresholding– Judiciously removes numerical noise– Smoothens the distribution– Does not impose further limitation on spatial resolution

● DWT scales as O(MNgrid

) (independent of N), where M is the size of the wavelet filter– Much faster than Monte Carlo cosine expansion 

Alternative Method 2:Alternative Method 2:Wavelet Transform on the GridWavelet Transform on the Grid

● Study microbunching instability in FERMI@ELETTRA (first bunch compressor system) by using an analytical model:

– Flat­top distribution with a sinusoidally modulated frequency

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldAnalytical ModelAnalytical Model

ρx , z =[1A cos2πz

λ] μ z g x μ z =

14 a

[ tanh za

b−tanh

z−ab

]

gx =1

2πσ x0

e−

x2

2σx0

(x,z)ρ

z

x

Quantity physical unit non­dimm

m

modulation wavelength λ μmmodulation amplitude A ­ A

m

m

m

m

transverse beam size σx0 2.3 x 10­4 σ

x0

longitudinal beam size σz0 9 x 10­4 σ

z0

= /λ λ σz0

beam parameter a 1.18 x 10­3 a=a/σz0

beam parameter b 1.5 x 10­4 b=b/ xσ0

transverse coordinate x [­4σx0

,4σz0

] x=x/ xσ0

longitudinal coordinate z [­2σz0

,2σz0

] z=z/ zσ0

● Gain factor: beam's response to (single wavelength) initial modulation 

– Needed as a function of modulation wavelength λ

– Smaller    λ higher spatial resolution  more basis functions  slower!

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldGain FactorGain Factor

[From Bassi 2008]

Gain factor Vs. λ

● The smallest structure representable:

– Monte Carlo cosine expansion: the highest order basis function retained                                                               N

cx, N

cz: # of basis functions in x­, z­coord.

– Grid­based methods: grid resolution                                                      N

x, N

z: grid resolution in x­, z­coord.

● Grid is designed such that there is a fixed number of gridpoints sampling the highest order basis function retained (about 20), i.e.,  N

z=20N

cz 

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldSpatial ResolutionSpatial Resolution

λxmin, cos=

2 Lx

N cx

λzmin, cos=

2 Lz

N cz

λxmin, grid=

4 Lx

N xλz

min, grid=4 Lz

N z

λzmin, cos

λzmin, grid

cos Ncz z

z

λzmin, cos

=10 λ zmin, grid

● Limit on usability (longitudinally):

– Cosine expansion:                                 

– Grid­based methods:

● Error of the approximation:

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldSpatial ResolutionSpatial Resolution

N cz2Lz

λ zmin ,cos

N z4 Lz

λzmin ,grid

Accuracy of cosine expansion approx.: Ncz Vs. λ

E=hxhz∑i=1

Nx

∑j=1

N z

[ ρexact x i , z j−ρappx xi , z j]2

E ~ SNR−2~ N−1

● The accuracy of all approximations is determined by:

                      spatial resolution                                    number of particles (N)

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldAccuracyAccuracy

Approx. Error Vs. Modulation lenghtscale Approx. Error Vs. Number of particles

N=108

cosine expansion: Ncx=40, N

cz=100

grid resolution: Nx=128, N

z=1024

λ=100 μmcosine expansion: N

cx=40, N

cz=100

grid resolution: Nx=128, N

z=1024

λ zmin, cos

λ zmin, grid

● Better spatial resolution more small scale structure more noise

● Gridded density distribution is noisy.  Remove noise (smoothen) by:– Truncating high­frequency components of the FFT expansion– Wavelet thresholding

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldSmoothnessSmoothness

Cross­section (x=0) of density approximations

● Monte Carlo cosine exp. ~ O(NNcxN

cz)

● Particle deposition on a grid ~ O(N)● FCT+ filtering ~ O(N

grid)

● DWT + denoising ~ O(Ngrid

)

● Recall:

– Alternative method 1:● Grid + FCT

~ O(N)+ O(Ngrid

)

– Alternative method 2:● Grid + DWT

~ O(N)+ O(Ngrid

)

● In realistic simulations  N >> Ngrid

particle deposition dominatesAlternative Methods 1 & 2  ~ O(N)speed (Alt. Meth. 1) = speed (Alt. Meth. 2)

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldEfficiencyEfficiency

Execution time Vs. N

cosine expansion: Ncx=40, N

cz=100

grid resolution: Nx=128, N

z=1024

                         (Ngrid

=131072)

t deposition

tMC cos

~ O1

N cx N cz

● Both alternative methods for density estimation presented here are about N

cxN

cz times faster than Monte Carlo cosine expansion

● In the present implementation of Bassi's code:          t(density estimation) : t(field computation) = 40% : 60%, so making the density estimation ~103 faster by using these new methods speeds up the code by ~ 40%

Comparison: The New Methods Vs. The OldComparison: The New Methods Vs. The OldEfficiencyEfficiency

cosine expansion: Ncx=40, N

cz=100

grid resolution: Nx=128, N

z=1024

Execution time: The New Methods Vs. The Old

t/tMC cos

 = 1/(NcxN

cz)

● We will present a detailed and systematic comparison of the new grid­based methods and the Monte Carlo cosine expansion (PAC 2009)

● With these alternative methods for representing beam density, we have optimized only one part of the simulation (density estimation)

● A more time­consuming part of the algorithm is a field calculation.We will focus on optimizing the field calculation by exploiting the advantages afforded by wavelet formulation:

– Compact representation(<0.5% of grid coefficients needed)

– Sparsity of operators (already designed a wavelet­based Poisson equation solver)

– Denoised representation: more accurate

Discussion of Further WorkDiscussion of Further Work

Sparsity Vs. N1%

0.1%

● We presented two new, grid­based techniques for density estimation in beams simulations as an alternative to Monte Carlo cosine expansion:

– Truncated FCT technique: 

● Orders of magnitude faster; just as accurate (equivalent to MC cosine)– Wavelet­denoised technique: 

● Orders of magnitude faster and appreciably more accurate

● The simulation times are significantly reduced

● Further optimization is needed on the field calculation bottleneck

– Take advantage of wavelets (sparsity, denoising) 

● Compare with Li's 2D CSR code for consistency

● Closing in on the big goal: having an accurate, efficient and trustworthy code which properly accounts for beam self­interaction due to the CSR

SummarySummary

Auxiliary SlidesAuxiliary Slides

Wavelet DecompositionWavelet Decomposition

The continuous wavelet transform of a function f (t) is

          mother wavelet with scale and translation dimensions s and     respectively

s ,=∫−∞

f t s , t dt

s ,t =1

s t−

s t

● Approximation – apply low­pass filter to Signal and down­sample

● Detail – apply high­pass filter to Signal and down­sample

● Wavelet synthesis (inverse wavelet transform): up­sampling & filtering

● Complexity:  4MN,  M the size of the wavelet, N number of cells

– Recall: FFT complexity 4N log2N

How Do Wavelets Work? How Do Wavelets Work? 

Wavelet analysis (wavelet transform):                               

S ­ signalA ­ approximationD ­ detail

● Wavelet transform separates scales

WaveletsWavelets

superimposed gaussians

FFT

wavelet transform

Numerical Noise in PIC SimulationsNumerical Noise in PIC Simulations● In wavelet space:

signal    few large wavelet coefficients  cij

noise   many small wavelet coefficients  cij

● Poissonian noise                                                 Gaussian noise  

● Denoising by wavelet thresholding: if |c

ij|< T , set to c

ij =0   (choose threshold T carefully!)

● A great deal of study has been devoted to estimating optimal T  

 (   σ was estimated earlier)

T=2 log N grid

Anscombe transformation

w/ Anscombe transformationw/out Anscombe transformation

NGP CICNppc

=5

Ni=64

Nppc

=5

Ni=64

Terzić, Pogorelov & Bohn 2007, PR STAB, 10, 034201

DF(

T)

DF(

T)

top related