dense continuous-time tracking and mapping with...

Post on 07-Sep-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dense Continuous-Time Tracking and Mappingwith Rolling Shutter RGB-D Cameras

Christian Kerl, Jörg Stückler and Daniel Cremers

Motivation

18.12.2015 Christian Kerl - kerl@in.tum.de 2

ElasticFusionKintinuous

KinectFusion DVO SLAM

Motivation

18.12.2015 Christian Kerl - kerl@in.tum.de 2

ElasticFusionKintinuous

KinectFusion DVO SLAM

What do they have in common?

Motivation

18.12.2015 Christian Kerl - kerl@in.tum.de 2

ElasticFusionKintinuous

KinectFusion DVO SLAM

What do they have in common?

• discrete poses

• global shutter

• dense tracking

Motivation

18.12.2015 Christian Kerl - kerl@in.tum.de 2

ElasticFusionKintinuous

KinectFusion DVO SLAM

What do they have in common?

• discrete poses

• global shutter

• dense tracking

This talk

• continuous trajectories

• rolling shutter

• dense tracking

Continuous Trajectory Representation

• Trajectory function

18.12.2015 Christian Kerl - kerl@in.tum.de 3

Continuous Trajectory Representation

• Trajectory function

• Cumulative B-Splines for SE3 (Lovegrove et al. BMVC2013)

• Few other representations in literature

18.12.2015 Christian Kerl - kerl@in.tum.de 3

Advantages

• Combine multiple sensors• Different measurement rates

• Unsynchronized

• Fewer variables than measurements

• Constrains motion (no jumping)

• Differentiable

18.12.2015 Christian Kerl - kerl@in.tum.de 4

From Discrete to Continuous

18.12.2015 Christian Kerl - kerl@in.tum.de 5

From Discrete to Continuous

18.12.2015 Christian Kerl - kerl@in.tum.de 5

From Discrete to Continuous

18.12.2015 Christian Kerl - kerl@in.tum.de 5

From Discrete to Continuous

18.12.2015 Christian Kerl - kerl@in.tum.de 5

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Cumulative Splines for SE3

18.12.2015 Christian Kerl - kerl@in.tum.de 6

Higher Order Splines

18.12.2015 Christian Kerl - kerl@in.tum.de 7

Higher Order Splines

18.12.2015 Christian Kerl - kerl@in.tum.de 7

Higher Order Splines

18.12.2015 Christian Kerl - kerl@in.tum.de 7

Higher Order Splines

18.12.2015 Christian Kerl - kerl@in.tum.de 7

Rolling Shutter Cameras

18.12.2015 Christian Kerl - kerl@in.tum.de 8

Rolling Shutter Cameras

18.12.2015 Christian Kerl - kerl@in.tum.de 8

Rolling Shutter Cameras

18.12.2015 Christian Kerl - kerl@in.tum.de 8

Rolling Shutter Cameras

18.12.2015 Christian Kerl - kerl@in.tum.de 8

Rolling Shutter Cameras

18.12.2015 Christian Kerl - kerl@in.tum.de 8

Rolling Shutter Projection

• Pixel captured at

18.12.2015 Christian Kerl - kerl@in.tum.de 9

Rolling Shutter Projection

• Pixel captured at

• Projection constraint

18.12.2015 Christian Kerl - kerl@in.tum.de 9

Rolling Shutter Projection

• Pixel captured at

• Projection constraint

18.12.2015 Christian Kerl - kerl@in.tum.de 9

Rolling Shutter Projection

• Pixel captured at

• Projection constraint

• Solve numerically

18.12.2015 Christian Kerl - kerl@in.tum.de 9

Rolling Shutter RGB-D Cameras

• Two independent RS cameras• Unsynchronized

• Different read out times

• Assumptions• Calibrated intrinsics / extrinsics / read out times

• RGB + depth not registered

18.12.2015 Christian Kerl - kerl@in.tum.de 10

Dense Tracking and Mapping

• Goal: Estimate to build a map without RS artifacts

• Minimize pixel-wise error w.r.t. control poses• Geometric error

• Photometric error

• Update map with rectified images once converged

18.12.2015 Christian Kerl - kerl@in.tum.de 11

current /reference /

Dense Image Alignment

18.12.2015 Christian Kerl - kerl@in.tum.de 12

Geometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 13

reference @ current @

Geometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 13

reference @ current @

Geometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 13

reference @ current @

Geometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 13

reference @ current @

Photometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 14

reference @ current @

Photometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 14

reference @ current @

Photometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 14

reference @ current @

Photometric Error

18.12.2015 Christian Kerl - kerl@in.tum.de 14

reference @ current @

Optimization

• Non-linear least squares optimized with Gauss-Newton

• Coarse-to-fine + robust weights

18.12.2015 Christian Kerl - kerl@in.tum.de 15

Mapping with Keyframes

• Map is set of keyframes

• Latest keyframe acts as reference image

• Frames with converged control points warped to keyframe

• Fusion of RGB and depth using weighted average

18.12.2015 Christian Kerl - kerl@in.tum.de 16

Blur-aware Weights for RGB Fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 17

Blur-aware Weights for RGB Fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 17

Blur-aware Weights for RGB Fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 17

Blur-aware Weights for RGB Fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 17

Blur-aware Weights for RGB Fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 17

Evaluation

• Synthetic: ICL-NUIM living room scene• Rendered 4 trajectories each with GS and RS

• No motion blur

18.12.2015 Christian Kerl - kerl@in.tum.de 18

Evaluation

• Synthetic: ICL-NUIM living room scene• Rendered 4 trajectories each with GS and RS

• No motion blur

• Real: PrimeSense Carmine within MoCap• 6 sequences with groundtruth trajectory

• Higher translational and rotational velocities than TUM RGB-D benchmark

18.12.2015 Christian Kerl - kerl@in.tum.de 18

Evaluation

• Synthetic: ICL-NUIM living room scene• Rendered 4 trajectories each with GS and RS

• No motion blur

• Real: PrimeSense Carmine within MoCap• 6 sequences with groundtruth trajectory

• Higher translational and rotational velocities than TUM RGB-D benchmark

• Existing benchmarks not usable due to pre-registered depth images

=> Please provide raw sensor data in future datasets! <=

18.12.2015 Christian Kerl - kerl@in.tum.de 18

Results

• Baseline: Geometric Alignment to KF with GS and fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 19

Results

• Baseline: Geometric Alignment to KF with GS and fusion

18.12.2015 Christian Kerl - kerl@in.tum.de 19

Translation Drift Rotational Drift

Spline + GS + G 59.0% 27.3%

Spline + GS + G + P 60.9% 27.6%

Spline + RS + G 68.8% 61.0%

Spline + RS + G + P 71.5% 61.3%

Results

18.12.2015 Christian Kerl - kerl@in.tum.de 20

Conclusion

• Dense tracking method to estimate continuous-time trajectory

• Allows to model/remove RS

• Blur-aware weights to suppress motion blur artifacts

• Spline + RS model improve accuracy considerably

• Complementary to existing mapping systems

18.12.2015 Christian Kerl - kerl@in.tum.de 21

top related