convex duaity and kantorovich duality theoremhomepages.wmich.edu/~ledyaev/zhu-talk2-sp2016.pdf ·...

Post on 22-Jan-2021

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex Duaity and Kantorovich Duality Theorem

Qiji Zhu

Analysis Seminar

Feburary 12, 2016

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Introduction

In the last talk I mentioned that the Kantorovich duality for masstransport problem is, in fact, a special case of the convex duality.Today we go into some of the details by

• First introduce the basic concepts of convex analysis: convexsets and functions, subdifferentials, and convex conjugate;

• next we discuss the Fenchel duality theorem and outline theproof.

• finally culminating in a proof of the Kantorovich dualitytheorem by converting the Kantorovich mass transportproblem into a Fenchel problem.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Convex sets

Convex sets

We say C ⊂ X is convex if for any x, y ∈ C and λ ∈ [0, 1],

λx+ (1− λ)y ∈ C.

Note that the sum and difference of convex sets are convex and sois the intersection of any class of convex sets. However, the unionof two convex sets may not be convex.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Convex functions

Convex functions

We say f : X 7→ R ∪ {+∞} is convex if, for any x, y ∈ X andλ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Convex functions: properties

A convex function is always below any secant line in between thetwo intersection points.

x

y

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Convex functions: properties

Also, a convex function is always above its tangent lines.Moreover, a differentiable convex function has an increasingderivative function.

x

y

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Epigraph characterizations

Epigraph characterizations

Function f : X 7→ R ∪ {+∞} is convex iff epi f is a convex set inX × R.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Subdifferential

Subdifferential is a substitute for the derivative.

Subdifferential

The subdifferential of a lower semi-continuous convex function ϕat x ∈ dom ϕ is defined by

∂ϕ(x) = {x∗ ∈ X∗ : ϕ(y)− ϕ(x) ≥ ⟨x∗, y − x⟩}.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Nonemptyness of subdifferential

The most useful property of a convex function related to Lagrangemultipliers is

Nonemptyness of subdifferential

Let f : X 7→ R ∪ {+∞} be a convex function. Then for anyx ∈ int dom f ,

∂f(x) = ∅.

This result follows directly from the Hahn-Banach separationtheorem.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Nonemptyness of subdifferential: graph

Nonemptyness of subdifferential follows from separation theorem

x

y

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Subdifferential characterizations

Subdifferential characterizations

Function f : X 7→ R ∪ {+∞} is convex iff, for anyx∗ ∈ ∂f(x), y∗ ∈ ∂f(y),

⟨y∗ − x∗, y − x⟩ ≥ 0.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Convex setsConvex functionsSubdifferential

Corollary

Derivative characterizations

Function f : R 7→ R ∪ {+∞} is convex iff f ′ is increasing orf ′′ ≥ 0.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Legendre transform

Fenchel-Legendre transform

Let f : X → R ∪+∞ be a lsc function. The Fenchel-Legendretransform f∗ : X∗ → R ∪+∞ is defined by

f∗(x∗) = supx∈X

[⟨x∗, x⟩ − f(x)]

.

Note that f is not necessarily convex but f∗ is always convex.When f ′−1 exists we have

f∗(x∗) = x∗f ′−1(x∗)− f(f ′−1(x∗)).

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Legendre transform: examples

f(x) dom f f∗(y) dom f∗

0 R 0 {0}

0 R+ 0 −R+

0 [−1, 1] |y| R

0 [0, 1] y+ R

Table: Conjugate pairs of convex functions on R.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Legendre transform: examples

|x|p/p, p > 1 R |y|q/q (1p +1q = 1) R

|x|p/p, p > 1 R+ |y+|q/q (1p +1q = 1) R

−xp/p, 0<p<1 R+ −(−y)q/q (1p +1q = 1) −int R+

− log x int R+ −1− log(−y) −int R+

ex R{y log y − y (y > 0)0 (y = 0)

R+

Table: Conjugate pairs of convex functions on R.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Young inequality

Fenchel-Young inequality follows directly from definition.

Fenchel-Young inequality

f(x) + f∗(x∗) ≥ ⟨x∗, x⟩.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Holder inequality

Let f(x) = |x|p/p in the Fenchel -Young inequality we get

Holder inequality

For 1/p+ 1/q = 1,|x|p

p+

|y|q

q≥ |xy|.

When p = q = 2 we get

Cauchy inequality

|x|2

2+

|y|2

2≥ |xy|.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Young equality

In general,

Fenchel-Young equality

f(x) + f∗(x∗) = ⟨x∗, x⟩.

iffx∗ ∈ ∂f(x).

This also follows from the definition.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Young inequality: graphic illustration

For increasing function ϕ, ϕ(0) = 0, f(x) =∫ x0 ϕ(s)ds is convex

and f∗(x∗) =∫ x∗0 ϕ−1(t)dt.

s

t

O x

x∗

ϕϕ−1

Fenchel-Young inequality

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Young inequality: graphic illustration

s

t

O x

x∗

ϕϕ−1

Fenchel-Young inequality

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel-Young equality

s

t

O x

x∗

ϕϕ−1

Fenchel-Young equality

We see x∗ = ϕ(x), x = ϕ−1(x∗).

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Fenchel duality

Let v(y) = infx[f(x) + g(x+ y)]. The Fenchel primal problem is

p = v(0) = infx[f(x) + g(x)]. (1)

The dual problem is

d = v∗∗(0) = supy∗

[−f∗(y∗)− g∗(−y∗)]. (2)

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Verify the dual

We calculate v∗(−y∗) = supx,y[⟨−y∗, y⟩ − f(x)− g(x+ y)].Letting u = x+ y we have

v∗(−y∗) = supx,u

⟨−y∗, u− x⟩ − f(x)− g(u)

= supx[⟨y∗, x⟩ − f(x)] + sup

u[⟨−y∗, u⟩ − g(u)]

= f∗(y∗) + g∗(−y∗).

Thus,

d = v∗∗(0) = sup−y∗

[0− v∗(−y∗)] = sup−y∗

[−f∗(y∗)− g∗(−y∗)].

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Weak duality

Weak duality p ≥ d follows directly from the definition.Strong duality asserting p = d needs additional condition which wediscuss below.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Strong duality

• If both f and g are convex functions it is easy to see that so is

v(y) = infx[f(x) + g(x+ y)].

• We can directly check that dom v = dom g − dom f .

• The sufficient condition for ∂v(0) = ∅, is

0 ∈ int dom v = int[dom g − dom f ]. (3)

A condition (3) is often referred to as a constraint qualification.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Strong duality

Duality and constraint qualification

If l.s.c. convex functions f , g satisfy the constraint qualificationconditions

0 ∈ int dom v = int[dom g − dom f ]

then p = d, and the dual problem has a solution when finite.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Fenchel-Young inequalityFenchel formulationWeak and strong duality

Strong duality: Proof

The condition

0 ∈ int dom v = int[dom g − dom f ]

implies that ∂v(0) = ∅. Let −y∗ ∈ ∂v(0) we have

f(x) + g(x+ y) ≥ v(y) ≥ p− ⟨y∗, y⟩

Letting u = x+ y we have

p ≤ f(x)− ⟨y∗, x⟩+ g(u) + ⟨y∗, u⟩

Taking inf on x, u we have

p ≤ −f∗(y∗)− g∗(−y∗) ≤ d ≤ p.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Setting

We will prove the Kantorovich duality theorem under the followingsetting:

• Assume X and Y are compact sets.

• Consider Banach space E = C(X × Y ), continuous functionson X × Y endowed with the sup norm.

• Then E∗ =M(X × Y ) is the space of regular Radonmeasures endowed with the total variation norm.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Kantorovich Duality

Kantorovich Duality

The function c satisfies the constraint qualification conditions thereexists a(x), b(y) integrable such that

c(x, y) ≥ a(x) + b(y).

Then

infπ∈Π(µ,ν)

∫X×Y

c(x, y)dπ(x, y)

= sup(φ,ψ)∈Φc

{∫Xφ(x)dµ(x) +

∫Yψ(y)dν(y)

}.

where Φc := {(φ,ψ) ∈ C(X)× C(Y ) : φ(x) + ψ(y) ≤ c(x, y)}.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Converting to Fenchel problem

For u ∈ E = C(X × Y ) define

g(u) :=

{0 u(x, y) ≥ −c(x, y)+∞ otherwise.

f(u) :=

{∫X φ(x)dµ+

∫Y ψ(y)dν u(x, y) = φ(x) + ψ(y)

+∞ otherwise.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Converting to Fenchel problem

We have

infu∈E

[f(u) + g(u)]

= inf{∫Xφ1(x)dµ+

∫Yψ1(y)dν : φ1(x) + ψ1(y) ≥ −c(x, y)}

= − sup(φ,ψ)∈Φc

{∫Xφ(x)dµ+

∫Yψ(y)dν}.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Calculating the conjugate

We have

g∗(−π) = supu∈E

[−∫X×Y

udπ − g(u)]

= supu∈E

[−∫X×Y

udπ : −u(x, y) ≤ c(x, y)]

=

{∫X×Y c(x, y)dπ π ∈M+(X × Y )

+∞ otherwise.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Calculating the conjugate

f∗(π) = supu∈E

[

∫X×Y

u(x, y)dπ − f(u)]

= supu∈E

[

∫X×Y

φ(x) + ψ(y)dπ −∫Xφ(x)dµ−

∫Yψ(y)dν]

=

{0 π ∈ Π(µ, ν)

+∞ otherwise.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Calculating the conjugate

Thus,

supπ∈E∗

[−f∗(π)− g∗(−π)]

= supπ∈Π(µ,ν)

−∫X×Y

c(x, y)dπ

= − infπ∈Π(µ,ν)

∫X×Y

c(x, y)dπ.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

Constraint qualification condition

We observe

[a(x)− 1] + [b(y)− 1] ∈ int[dom g ∩ dom f ].

Thus

0 ∈ intdom f − dom g.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Convex sets and functionsConvex duality

Kantorovich Duality theorem

Kantorovich DualityKantorovich DualityProof of Kantorovich DualityChecking constraint qualification condition

References

G. Monge, Memoire sur la theo rie des deeblais et des remblais, InHistorie de l’Academie Royale des Sciences de Paris (1781) 666-704.A. Galichon, Optimal Transport Methods in Economics, preprint 2015.L. V. Kantorovhich, Mathematical methods in the organization andplanning of production. Leningrad Univ. 1939.L. V. Kantorovhich, On the translocation of masses. Dokl. Akad. Nauk.USSR 37 (1942) 199-201.C. Villani, Optimal Transport, Old and New, Springer 2006

C. Villani, Topics in Optimal Transportation, AMS 2003.

Qiji Zhu Convex Duaity and Kantorovich Duality Theorem

top related