connectome classification: statistical connectomics for analysis of connectome data

Post on 10-May-2015

1.006 Views

Category:

Health & Medicine

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Talk at HBM11 (duration: 10 minutes)

TRANSCRIPT

Connectome Classification:Statistical Connectomics for

Analysis of Connectome Data

Joshua T. Vogelstein, PhDd: Applied Math. & Statsu: Johns Hopkinsw: jovo.mee: joshuav@jhu.edu

Statistical Connectomics

Statistics “the art of data collection and analysis”

Connectomics “the study of connectomes”

Statistical Connectomics

“the art of connectome data collection and analysis”

Contributors

StatsCarey E. Priebe

Glen A. CoppersmithMark Dredze

Data CollectionSusan Resnick

Connectome InferenceWill R. GrayJohn BogovicJerry Prince

WisdomR. Jacob Vogelstein

Support: various grants

Simplest. Example. Ever.

V1

M1A1

Blind People

V1

M1A1

Deaf People

Simplest. Example. Ever.

V1

M1A1

Blind People

V1

M1A1

Deaf People

No possible classifier based on graph

invariants can perform this insanely simple

classification problem!!!

Realest. Example. Ever.MR Connectome Gender Classification

statistical graph model graph invariants

> 83% accuracy < 75% accuracy

Statistical Connectomics1. Collect Data Multi-Modal MR Imaging

2. Preprocess Data MR Connectome Pipeline

3. Assumptions Signal Subgraph

4. Construct a Decision Rule Robust Bayes Plugin Classifier

5. Evaluate Performance Leave-One-Out X-Validation

6. Check Assumptions Synthetic Data Analysis

7. Extensions Relax assumptions

Statistical Connectomics1. Collect Data Multi-Modal MR Imaging

2. Preprocess Data MR Connectome Pipeline

3. Assumptions Signal Subgraph

4. Construct a Decision Rule Robust Bayes Plugin Classifier

5. Evaluate Performance Leave-One-Out X-Validation

6. Check Assumptions Synthetic Data Analysis

7. Extensions Relax assumptions

1. Collect Data:Multi-Modal MR Imaging

• 49 senior individuals; 25 male, 24 female

• diffusion: standard DTI protocol

• structural: standard MPRAGE protocol

2. Preprocess Data:MR Connectome Automated Pipeline

• coherent collection of code• fully automatic and modular• about 12 hrs/subject/core• yields 70 vertex graph/subject

http://www.nitrc.org/projects/mrcap/

3. Data Assumptions:Signal Subgraph

4. Construct a Decision Rule:Robust Bayes Plugin Classifier

• asymptotically optimal and robust

• finite sample niceness

y =�

(u,v)∈S

pauv

uv|y(1− puv|y)1−auv πy

5. Evaluate Performance:Leave-One-Out X-Validation

100 101 102 1030

0.25

0.5

log size of signal subgraph

mis

clas

sific

atio

n ra

te

incoherent estimator

Lnb=0.41

L i nc=0.27

L ! = 0 .5

size of signal subgraph#

sign

al−v

ertic

es

coherent estimator

L c oh=0.16

200 400 600 800 1000

10

20

300.16

0.3

0.4

0.5

100 101 102 1030

0.160.25

0.5

log size of signal subgraph

mis

clas

sific

atio

n ra

te

some coherent estimators

size of signal subgraph

# st

ar−v

ertic

es

zoomed in coherent estimator

400 500 600

15

18

21

0.16

0.3

0.4

0.5

coherent signal subgraph estimate

verte

x

vertex20 40 60

20

40

60

threshold

coherogram

0.04 0.14 0.29 0.55

20

40

600

10

20

30

6. Check Assumptions:Synthetic Data Analysis

vertex

verte

xCorrelation Matrix

100 200 300

100

200

300

−1

−0.5

0

0.5

1

7. Extensions

• relax the independent edge assumption

• relax binary edge assumption

Discussion

• 83% > 75%

• yay statistical modeling!

Q(&A)

• anything?

4. Construct a Decision Rule:Signal Subgraph Estimation

• for each edge, we compute the significance of the difference between the two classes using Fisher’s exact test

• the incoherent signal subgraph estimator finds the s edges that are most significant

• the coherent signal subgraph estimator finds the s edges that are most significant incident to m vertices

4. Construct a Decision Rule:Signal Subgraph Estimation

n=64

verte

x

vertex

negative logsignificance matrix

20 40 60

20

40

60

incoherentestimate

# co

rrect

= 7

coherentestimate

# co

rrect

= 1

5

−4.4 −1.6 −0.9

6. Check Assumptions:Synthetic Data Analysis

100 101 102 1030

0.25

0.5

0.75

1

log size of signal subgraph

mis

clas

sific

atio

n ra

te

incoherent estimator

size of signal subgraph

# st

ar−v

ertic

es

coherent estimator

200 400 600 800 1000

10

20

300.18

0.3

0.5

0.7

0 20 40 60 80 1000

0.5

1

# training samples

mis

sed−

edge

rate

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

# training samplesm

iscl

assi

ficat

ion

rate

cohincnb

top related