conference perspectives for e-mobility in brazil€¦ · power – (discharge/charge) – 315 w/...

Post on 19-Oct-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

n

CONFERENCEPERSPECTIVES FOR E-MOBILITY IN BRAZIL

AUGUST 21 – 23, 2019, São Paulo

Dr. Roland PlatzFraunhofer Institute for Structural Durability and System Reliability LBFwww.lbf.fraunhofer.de

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Test and reliability research for e-mobility at Fraunhofer LBF

FUTURE MOBILITY – BATTERY TECHNOLOGY FOR ELECTRIC VEHICLES

[FEV Europe GmbH]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Foster, 2011]

[Hergersberg, 2011]

ice drilling core

Temporal evolution of CO2 and climate forcing

[Foster, 2017 ]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Boden, 2015]

Annual global fossil-fuel carbon emissions

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[BP-Report, 2018]

World primary energy consumption

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

modern renewables: e.g. solar, hydro, wind, and biofuels (canola)

modern renewables other than electricity, e.g. geothermal

[Zervos, 2018]

transportation

powerheat

sector 1 sector 2 sector 3

Renewable energy in total final energy consumption

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben [Sterner, 2017]

over-ground, 100% renewable

under-ground, predominantly

fossil

over-ground, 100% renewable

global primary energy consumption in EJ/a *

*E = Exa, 1018

1 J = 1 Nm = 1 kg·m 2/s 2

Biomass Water

Water

Biomass

Energy efficiency

year

Time frame primary energy consumption

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Sterner, 2017]

Examples of basic electric energy storing technology

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

primary batteries – discharging only once secondary batteries – multiple charging/ discharging (≥ 1.000 cycles)

Primary and secondary batteries

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Understanding today’s basic electric car concepts

[electrikcars.in]ICE – internal combustion engine

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Areas of e-mobility – pursued mix

[General Electric]

reliability check at

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Brief history

*from the frog

*

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Wikipedia]

Element Lithium

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Wikipedia]

Element Lithium

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Li-ion cell – set up and function, discharging condition

[IKT, 2015]

electron applianceanode cathode

LiMO2 layergraphite layer Li+-ions

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Li-Ion battery design

[IKT, VDE, DKE]

cell module

pack/system

- temperature

- voltage

- current

- cooling temp.

battery management

system

BMS

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Li-Ion battery design

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Technical criteria

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Buchmann, The Battery University]

Power tools vs. kitchen clock

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Sterner, 2017]

composite anode (-)

current collector (-)

micro porous separator, electrolyte

composite cathode (+)

current collector (+)

Layers of electrodes in Li-ion cells

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Technical criteria

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[IKT, 2015]

h

h

min.

min.

time for 2000 mA (theor.) current per hour

example: Li-Ion cell with nominal capacity of 2000 mAh

C-rate in relation with time and current

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Technical criteria

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

charging cycles

lifet

ime

in y

ears

long

rath

er sh

ort

cell phone, MP3

medicine devices

BEV

stationary batteries

emergency systems

SOC 20 -90 %

[IKT, 2015]

Lifetime for different applications without and with restriction of SOC

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[IKT, 2015]

charging cycles

resid

ual c

apac

ity in

mAh

Decrease of residual capacity for different currents

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[IKT, 2015]

char

ging

cyc

les

remaining residual capacity of 70% after 500 cycles if fully used (1.000 cycles if restricted to DOD 80%)

Cycles if restricted to state of charge (SOC) and depth of discharge (DOD) to a residual capacity of 70%

[IKT, 2015]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[IKT, 2015]

Properties of different cell types for Li-ion batteries, material combination with respect to the cathode

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Broussely,2005]

Degradation and aging

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[barre2013]

Illustration of aging effects on battery negative electrode: the capacity fade and the SEI raise

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Electrochemical Impedance Spectroscopy (EIS)

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

inductive behavior

ohmic internal resistance

SEI-layer

charge transfer

diffusion

lowest frequency:

highest frequency: 4 kHz

impedance spectrum: T = 25° C, SOC = 3%, Idc = 200mA, Iac=400mA

[Keil, 2012]

Identifying physical and electrochemical effects –characteristic areas in the electrochemical impedance spectroscopy (EIS)

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

SOC increasing

impedance spectra to 10 mHz when charging with Idc = 500 mA and Iac=400mA

[Keil, 2012]

Modelling dynamic behavior for battery characteristics

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[CEA, 2017]

Aging – cyclic

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

cylindrical cell

prismatic cell

pouch cell

Cell types

[IKT, 2015]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Cell types

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Connecting in series and parallel

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Packaging and cooling in a HV-battery systemexample: development of a HV-battery system for a trailer at Fraunhofer LBF

[evTrailer – self-sufficient electric cooperative driving system for trailers, funded by the GERMAN FEDERAL MINISTRY FOR ECONOMIC AFFAIRS AND ENERGY]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Specifications for HV-battery

basic idea

specifications, set by Fraunhofer LBF

cell

LG NMC (INR- 18650 HG2)

3000 mAh | 3,6 V | 213 Wh/kg | 1,3 C

module

224 cells | 8s28p | 84 Ah | 28,8 V | 2,42 kWh

module housing: thermoplastic resin (Polyamide PA-1200)

system

21 modules

4704 cells | 168s28p | 84 Ah | 604,8 V | 50,08 kWh

system housing: carbon-fiber-sandwich-compound

drag at kingpin, electric support, discharging

sensorickingpin

pressure at kingpin, recuperation, charging

Auxiliary electric powerUsable capacity

consumption reductionlifetime

redemption time < 4 years

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Cooling – with water-glycol

view

view

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

forward and backward flow

Cooling – with water-glycol

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – spot welding for cell contact und busbars

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Modules

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Modules – system pack

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – integration and wiring

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Modules – cell sensor circuit (CSC)

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Modules – cell sensor circuit (CSC)

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Module – high voltage wiring

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery Management System BMS

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery Management System BMS

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – mechanical integration

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – mechanical integration

Lindapter®-Trägerklemmverbindungen

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Helping hands

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Fraunhofer LBF – car pool battery electric vehicles (BEV)

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Mechanical + thermal + electrical loading on high voltage battery

high voltage battery pack

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Mechanical + thermal + electrical loading data

high voltage battery pack

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Test rig for cell cyclization of cells at Fraunhofer LBF

Cell Cyclization device

Voltage – up to 6 V DC

Current – +20 A/ -40A

Power – (discharge/charge) – 315 W/ 160 W

Cell temperature measurement (cylindrical cells)

Climatic Chamber

Temperature range: -40 °C – 180 °C

Cooling down / heating up rate : 5 K/min / 3 K/min

Humidity : 10 - 98% (max) (Temp - +10 °C - +95 °C )

Dimensions: 0.5 x 0.5 x 0.4 m

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Mechanical, thermal and electrical testing at Fraunhofer LBF HF HST : High Frequency Hydraulic Simulation Table

Max. specimen weight :1000 kg

Frequency control band : 2 – 200 Hz (m < 350 kg)

Max. displacement: 100 – 120 mm (x,y,z)

Max. acceleration : 12 g (@1t)

Climatic Chamber

Temperature range: -40 °C – 80 °C

Cooling down / heating up rate : 4 K/min

Humidity : 95% (max)

Dimensions: 4 x 4 x 3.5 m (width depth high)

VES : Vehicle Energy System

Voltage range: 8 – 800 (DC)

Current range: -600 up to +600 A

Max.Power : 250 kW

Current output speed : -540 A to 540 A in 2 ms

Coolant device

Temperature range : -30 up to +120 °C

Resolution accurateness : ± 0.3 °C

Max. coolant flow : 60 l/min-ca

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Example test profile for battery systemte

mp

erat

ure

in °

C

time in min

stat

e o

f ch

arg

e SO

C in

%

time | temp.

time | temp.

temperature

cooling water

SOC

flow rate cooling water 8 l/min

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Matching between specified and realized load spectra at Fraunhofer LBF – example

load power spectrum density load class limit exceedance

specified (target) load

realized load

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Scope

- Li-ion chemistry

- Performance

- Degradation

- Packaging and cooling

- Reliability testing

- Conclusion

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Albemarle, 2019]

Li-Ion Battery Technology Evolution

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[BP-Report, 2018]

Lithium and Cobalt: reserves and production

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

from left to right: material cost decrease

CopperLithium usability

Iron

Graphiteother electrode Materials

other Polymers

others

perc

ent o

f bat

tery

wei

ght

[IKT, 2015]

Usability of parts in a Li-ion battery with weight proportion in % each

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Summarizing notes

- 90% cell production in Asia

- Cell with 70% cost share in battery

- 90% recycling ratio Li

- Moor’s low is not valid, batteries with limited minimization

- 25% C02 by transport sector, highest potential for reduction

- 30% cost of BEV because of battery

- Next two years critical in Germany for cell production

- Digital and electrical transformation highest challenge

- Solid state not before 2025, 80% of liquid Li-Ion techniques are usable

- 55 EUR / kWh profitable

- 35 Mio t Li sources worldwide, 1 Mio t p. a. 35 years exploitation recycling

- 800 V charging voltage is goal to be similar to fueling ICE-cars today less current necessary that needs high cooling

- Remanufacturing (like in aerospace engineering during repair and maintenance) not as good due to difficult separation of cell components

[Notes from 7. Batterieforum Berlin, 2019]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Literature

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Literature

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Thank You.

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Sterner, 2017]

biomass Heat

year

gas from wind, solar

windwind

solar heat

solar power (PV, CSP)

geothermic (power, heat)

biomass power

water power

natural gas

nuclear power

coal

mineral oil

energy saving

energy efficiency

electro-mobility

heat pump

wind, solar, water

glob

al p

rimar

y en

ergy

cons

umpt

ion

in E

J/a

Time frame primary energy consumption prediction

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Li-Ion battery principle

[battery university]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[IKT, 2015]

Element Lithium

[IKT, 2015]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Keil, 2012]

time in h

volta

ge in

V

Open-circuit voltage for Li-ion cell, discharging and charging in 25 steps each with 4h waiting time after each discharging or charging

Performance check

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

terminal voltage

open-circuit voltage

Open-circuit voltage for Li-ion cell with respect to SOC

[Keil, 2012]

state of charge (SOC) in %

volta

ge in

V

charging steps

discharging steps

Performance check

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Open-circuit voltage for Li-ion cell, with respect to different C-rate and averaging

[Keil, 2012]

state of charge (SOC) in %

volta

ge in

V

charging 1,00 Cdischarging 1,00 Ccalculated open-circuit voltage 1,00 Ccharging 0,01 Cdischarging 0,01 calculated open-circuit voltage 0,01 C

Performance check

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Sterner, 2017]

active material potential

vs. Li/Li+ [V]

max. useful spec. capacity [Ah/kg]

notes

Redox potential and maximum useful capacity

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

potential vs. Li/Li+ [V]

Electrode potential of different active materials

[IKT, 2015]

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

environmentsafety

nominal voltage in V

volumetric energy density in Wh/l

gravimetric energy density in Wh/kg

discharge current

lifetime (cycles)

costs for 18560 €/kg in (2014)

rel. costs for €/kg per cycle

application

[IKT, 2015]

Properties of different cell types for Li-ion batteries, material combination with respect to the cathode

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

[Vetter, 2005]

Lithium-ion anode aging—causes, effects, and influences

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

isolator

positive plate

positive temp. coeff. comp.

seal

housing

positive electrode

negative electrode

negative tab

separator

positive tab

pressure relief valve

safety device short circuit

[Sterner, 2017]

Properties cylindrical cell

AAA

18650

large size

large size

type diameter in mm

height in mm

nominal capacity in Ah

© Fraunhofer LBF

Arc

hivi

erun

gsan

gabe

nA

rchi

vier

ungs

anga

ben

Battery system – startup at FRAMO, May 27. – 29, 2019

top related