characteristic evaluation of acoustic emission sensors

Post on 13-May-2022

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

KR0101246

KAERI/TR-1691/2000

Characteristic Evaluation of

Acoustic Emission Sensors

5 * ! •

2000 \1 12 08

- I -

i .

n.

HI. ifl-g-

^ AE

AE

ASTM El 106 standard^!

tfi

- b ASTM E976ofl

IV.

AE >S4fe

- II -

1 1

ii

!

3

11

31

42

52

55

- HI -

1 S- M

*! ^-#4^^ 7}^

AE

AE7}

fe AE

AE AE

AE

371

K 471

}fe AE

- 1 -

AE

AE

«>

71

AE

fe c|

ASTM^]

AE

2 S- AE(Acoustic Emission)

1. Acoustic Emission Sensor^

4 o}§

K ©)

2. Sensor

. ©] * o > ^

__ rt —

A.

fe S.^ PZT(lead(Pb) zirconate titanate)^-

«<H>MDirection of Sensitivity to Motion)

30 1 Mhzi]

20 kHz

- 4 -

30 kHzolH 1

3. Acoustic Emission Sensor5j

0%

O)

— 5 •"

FIGURE T. Schematic diagram of a typicalacoustic emission sensor mounted on a testobject

DAMPINGMATERIAL

WEAR PLATE

*<r?f»>rrn>>/ty»ii\ ELECTRFCALYZZ2 LEAD

>"/ / A

PfEZOCERAMiC— ELEMENT

COUPLANT LAYER

connector^

plate), ^q-, 4(backing p l a t e ) ^ %£.

connector#

. ©]

(2)

^^717] - (3) (4)

4. Sensor^

7}.

in-plane

. 4mm ^-7^S\ PZT c ] ^ J 5 . ^ ^ 0.5 MHz-2}

- 7 -

lmm

. o) ^- ^ ^ a p e r ture

effectSj-JL

aperture effect^ fig.6< |A-]

non-planar

3 mm ^ 0.5 MHz

5. ^^(Couplants and bonds)

random spot^ %O\JL

- 8 -

7\.

i l , water, g l y c e r i n ) ^

M^: ^Fg-^1fe couplnaUl-

AE Sensor

^ ) ^ ] } . ASTM

6. AE Sensorofl

7>. Curie

sgo] u\ o)J$ # ^ * f x l 6 | ^ &SM Curie

^- curie temp5| 50t:ol }<HlA-l *£^°.S- A]~g-o| ^cf. o]

curie £ 5 . ^ PZT^ ^^ r^ l nfe]- ^^-S-M^]: 300<>1|A-] 400°C<>|

^ ^ " 4 ^ : ^TlufCbarium titanate -120"C) Curie

lithium niobate 1210°C).

. Fluctuating

PZT

^ single crystal

7. ^ - T 1 AE Sensorsif Sensor Mounts

- 10 -

3.7M

©

. ^^(Dif ferent ia l )

single ended preamplifier^.c|- differential preamplifier^

S-Bf^:(Acoustic waveguides)

- 1 1 -

3 S- AE (Acoustic Emission) 4!! M s\ T T8 )

1 AE

y\.

4-g-**!;}-. ^ barium titanate(BaTiO), lead zirconate

titanate[Pb(0.4Zr0.6Ti)03 to Pb(0.9Ar0. lTi)O3], modified lead

metaniobate(PbNb205).

s.io|

DC

TABLE ' . Typical property ranges of piezoceramic materials at room temperature and low drive

Free dieiecuic constdm

Direrr piwfjciwrpic rniwlwn?

Reverse aiezoeltctric conslant£-, jVflTi'N • iC S|

Coupling coefficient squared

Frequency conswnsN.,t |H?-rn|

Mechaniral Qui-Mry fectotG,.

Curie lernperatUfSEC I'CI

Lead ZirconKte-Lsad Titanate

iOC to 3.S0O

!iC to 600

19 :o 2S

0.47 to 0.49

!.SSOto2.IOO

70 to r,!00

BariumTitanate

700 to 1.500

80 to 180

a to 20

0.19 CO 025

2.000 to 2,800

100 to 600

9u tc-1 as

LeadMetaniobate

185 to 7S0

60 to i 70

24 to 34

0.20 to 0.32

!,SS0 to 2,570

i£0 to 750

2S0 to 450

LeadTitartate

: 90 iO 280

50 to 100

30 EC 36

033 to CiAO

1.95C toj.200

400 to SSO

27S tc 330

£L°\Q piezo( pressure

piezoelectricity^

from force) efe7}^ 4

- Curie ^ S (Tc) : o|

S. 3.7}fe

150°C(300 350"C(660

capacitance

- 13 -

. o)

>iofl cfls|{ ?! train*] ringing

2.

| ^ single event, ^-tj}<* (50Hfe<HH lMfe),

PZT(lead zirconate titanate)

truncated

- 14 -

6mm(0.25 2.5mm(0.1

^ 3 . ^ 1.0 mm (0.04

45°

H ^ 1

FIGURE 1. Components of a conical acousticemission transducer: (a) active element sideview; |b) top view of backing; [cj active elementtop view; and (dj side view of backing

(a*

FIR?D SllVER

fbj

f LAI FULCTOODT AREASFIAT Sf t\VO VO 7HRE£« I N G K O F UGHT

8ACi«,\'G f ORACTTv'E f lcMEMf

TRUNCATED CONE Or PZT

BASS DIAMETER: 6 mm (G.Z5 fn.jTRUNCATED END

DIAMETER: 1 mm (O.D-i tfl.HEIGHT: 2.5 mm {0.1 in)SILVER ElECTRODES ON

TWO FIA~ SURSACK

FRONT SURfiftCE !N REGION OFTRANSOUCSa MOUNTING HAT 31' 7ttOTO iHSEE fWNGES O f LIGHT

I mm IQ.f 2 in.j RADIUS

DRILL HOLSFOR ELECTRICALCONNECTION

35 MraylesH 25

- 15 -

l .o HfeA}o|sj

FIGURE 2. Performance characteristics of conicaltransducer: {aj measured voftage output versustime; input was a point-force step function on alarge steel block; and [bj amplitude frequencyresponse

(b)

:so\

j

I 150 41 i

Mu .j

0 C2 0.4 0.6 0.E !.O f.2

FREOUENCf

- 16 -

r

NBS

^r Connecticut ^

Hartford^ Staveley NDT Technologies^ EBL

FIGURE 3. Performance characteristics formodified conical transducer: |aj measuredvoltage output versus time; Input was a point-force step function on a steel block; and(bj ampiitude frequency response

3.

- 17 -

50 ±3 7}*}

^ lmm

aperture

3.71 S

backing^ 3.7] $}

15 m(50

^ ^ £ ] A}

a 2

FIGURE 4. Conical dynamic surface ctisp/acefT?«nttransducer; frequency response Is flat within= 3 dS over the range of SO KHi to 1 MHz

(1) (2)

- 18 -

3. 2*} (3)

(5)

fe Gaitherburg,

Industrial Quality Incorporated $1

Maryland^]

WBLE 2. Specifications for conical acoustic emission transducer

Shape;Dimensions:

DiameterHeight

Contact size:Weight:/viateria!:Electrical:

Fovs.'er iupplyOiJtput irripedanceMaximum output voltage

Respo-nse:

Oispi^cenwnt sensith/ity:

Transducer Head

CylirKfrical

44 nun [1.75 in.)j ^mn i fr.l j j jn.JI mm (0.04 InJ230g|!Ooz)Brass, piejoceramic and plastic

9 V batter,'50 ohms |BNC connector;2 V peak to peakAmplitude response (I3t

within ± 3 dS frombO KHz to 1 MHz

2 x iO" V m ' ' [nominall

Shield, Cover and Preamplifier

Cylindrical

!5C!6in.)73 mm (2.8S in.)

700 p (25 cz)Aluminum v/ltii electronic circuit

4. "§- ^^(Sensor for Particular Applications)

175, 375, 750, 1000ZL5]jl 1500

-§-#0} 30, 75,

. AC A|B12L ^ | A - | ^

4, 4 Ife40dB# AC

- 19 -

fe -215

^.t^ 7 } ^

160 °C<>1M- ^ 7 l ^ > A S ^ 200 °C(400

lead zirconate titanate(PZT)

# 5 . 1 - ^ - # ^ 4 . AC Ajsl^

^^(Broadband Sensors)

105

FIGURE 18. Acoustic emission testing sensors:AC series, miniature and broadband

(Miniature Sensors)

cabled 7MJL &-M

integral

- 20 -

(Directional Sensors)

lOdB } ^

f ^ lOdB

}#( fretting) ^ 4 ^ o | 7 1^]^ ^JAS. -? -^ ^^Sj fe -g-^4^} lOdB

integral S^o]^.^ ofl^l nfcg.

(Severe Environment and High

Temperature Sensor)

integral

fe 260°c 7?}*\ 4 ^

^*W*\] ^%-7Vs-^\^h *>l}fe 7]§o) 1 F . pa-i<y 4 -46dB

#35.1- 7>^1 175 1&O1JL(71^O| i V/ubar"1 Ajfe. -66 dB) u ^ *]-i}fe

- 21 -

(Integral Preamplifier Sensors)

u^ 19tcf-e]- 40, 60, 110, 150

9\}o)M.o)

FIGURE 19. integral preamplifier sensors {Jeft toright): 40 kHz, 60 kHz and ISO kHz

i

m11a

300 m<q

bypass

. 40dB 3.717}

o] >fl -c- .

(Intrinsically Safe sensor)

EEx-ia-IIB-T4S

a zone 0

acetylene, hydrogen,

- 22 -

blue water gas, coke oven gas, carbon disulphide

FIGURE 20. Intrinsically safe front-end acousticemission sensor

M. - ' • •

zener barrier^

-fe 27M

°f. (Underwater Sensor)

700

52dB(l V/ubar"1

neoprene

325

-fe- -72 dB)

fl>g-^(integral)

5.5

fe 1

(Wheeled Sensors)

- 23 -

(Dry coupling wheeled) -SUJfe &

175SJ- 375 Vk i$±3. 9 - ^ 7 ^ * ^ . 175 kSz -gUj-fe. 1 F-Pfl"1^ cfi

375 kBz -»fl^fe 1 F- Pa"1^

timer footprint^ 7f*l ^ ^ - B H ^ A]^-*}^- H>^(wet coupled

wheel)!- *H-*k ^r ^I^f. 30 ffitoflA| 1.5 MHz 7}x| <y«j^. S ^ ^ 4 ^ r AC

4 (internal axle)^ol] ^ ^ ) ^ ^ ^Iu>.

-^: California^lsacramento^l ^ f l * ! Acoustic

Emission Technology Cooperation^A-] £.-*f- ^ ^ ^ ^ . u } . S 3 ^

5.

°1 # ^ ^ S . ' i ^ ^ - ^ ^^}H^^I quiet <§ oH-H 150

16

microdot ^ m

^ . o| 4^-o) <gSf ojc) 6> -100^1^ 200°C 77}

exci tat ion (spark impulse J2. §):zf -3Xf exci tat i on (^.^^f

- 24 -

60, 500, 800 l&Sj

TABLE 3. Specifications for various acoustic emission sensors

RESONANCE(peak frequencyresponse t o kHz)

.3075

175575.375750

!,CC!O!,S00

Fiat i00 l o 2.000Fidi 100 to i.000

!75300425300

500500SOO175375

4060

150

' • DIAGONAL* HEXAGONAL

SENSITIVITYdecibels

referred to1 V.'Pa

(1 V/ubar)

- 5 0 (-70}-60 (-30)-46 (-66)-48 (-68)-48 f-66}-55 I-7S)- 5 2 (-72)-60 (-80)

-70 [-90J-35 (-7SJ

- 3 0 (-30)-68 I-SSJ-SO (-801-58 i-78|

-52 (-721-46 S-66)-48 (-68)

- IE j-35)-15 (-35)-5 (-2SJ

AC Series Sensors

DIAMETERmillimeter

{inch)

22 (0.875)22 (0.875|22 (0.675)22 10.B7S)22 (0.875J22 10.375}22 (0.875)22 (0.875)

Broadband Sensors

25 (1.0)25 (1.0)

Miniature Sensors

iS (0.60)6 (0.26)8 (0.3214 (0.1 S)

HEIGHTmil l imeter

(inch)

29 (!.MJ29 M.HJ29 (1.141

29 ( I K )r9 (0.74)25 (0.98)27 ( i .06j26 (1.021

4S (1.75)4S (1.751

12.* (0.49|6.6 |0.26)9.9 (039)2.5 (0.10)

Directional and Severe Environment Sensors

32 (1.25; ro 13 (0.5)32 (1,25) to 13 (05)30 {1.2}**28 (1.1)

" 28 (1.1)

8 f O 3 l |3 (0.31)

16 (0.63)64 (2.5)64 (2.5)

Integra) Preamplifier Sensors

21 |0.8IJ f

21 (0.811*2 ! (0.8!) '

75 {2.96)?i |2.96)40 (1.6;

WEIGHTgram

(ounce)

35 {(.24)25 (0.92)23 (1.00126 (0.92)26 (0.92)26 (0.92J24 (0.S5J20 (0.71)

170 (6.0)170 (60)

14 |0.5)7 {0.2S)9 (0.313 (0.1)

14 (0.5)14 (0.5)35 (1.25)57 |2.0|57 (2.0)

96 (3.38;96 (3.38)53 fj.87)

CONNECTOR

LEMOLEIViOLEMOLEMOLEMOLEMOLEMOLEMO

BNC

LEMOLEMOLEMOLEMO

LEMOLEMOTNCLEMOLEMO

BNCBNCBNC

- 25 -

I FIGURE 21. Typical frequency response wi thI impulse calibration

/A

i

02 03 0^ 0.5

2. ~' Vi t . •

o.s or. a;, u,-: o? -if.

K 150

(Miniature Sensors)

nfl-f

microminature &^\ ^ ^ } # ^

1 1 ^-Hfe 4^" ^r°>^ ^ ^-S^o>^I -fi~S-*W. *T disk mediatest, short beam shear test, complex multidimensional test,

triangulation £JJL ^oji;].. 4 ^ 3.7]$]

#4

- 26 -

Miniature Sensorfe ^

Stl K 0.6 m^ integral

4

anodizing

^ ^ r -54 ©fl-H 1000CO]U}

10,000 peak G#

^ H^ 22^1

* H l v § . S ^ BNC

3.6mm ©jr}.

fe shock

©]

FIGURE 22. Frequency response curve forminiature sensor

£- so-—

$• _ 40 ; ' *

%% C 'DO ?00 3CC 400 500 600 700 800 VDO I.C(M

peak

BNC integral

€:10

- 27 -

FIGURE 23. Miniature sensor calibration curve

> £ 60

2',-

- 40—:-.#f i i : \ -* J • i T ^ : , '-I ; i :

. i J „„._. ' ; „.;,, ;i , : j >! t i _ i 1 1-..N'.K • j. j,v:J

^a 0 \G0 200 300 400 500 600 .'00 800 900 I,POOM FREQUENCY

Jit:}

microdot

package^-

FiGURE 24. Calibrationminiature sensor

E "• I I<*~ 60 ! '<••.

I I «Mf-i l 40 u ^| | 3SL....L_

,,, , 1

1

1

curve for larger

CO 2*. ; -s C 4C0 *-r ^ ?v0 ^

FREQUENCY(kilCifierul

size

i

— ;

J «C COO

t:f. (High Temperature Sensor)

- 28 -

PZT

titanate 1} cadmium bismuth

0°C

bismuth titanate

3} footprint-!

^ lead metaniobate, cadmium

Curie ££.# 7]-*lJL & ° M S.

£)JL 54

hard line integral

microdot-BNC

cfl*>

FIGURE 25. Caffbration curve for hfghtemperature sensor

3 00 :?00 3C0 400 S00 600 700 800 900 ' .C00

(Wideband and Flat Frequency Sensor)

- 29 -

excitation^]

excitation^]

.fe C}#(multiple)

PZT

7}

16 18 mm

T^ ^ ^ BNC

integral triaxial

150°C-2]

FIGURE 26wideband

y,~' 551 '

*M 30

^ ^ ZQ : 1

| | 35U,1

£J? ° :

. CaBbratfonsensor

• \

curve

t v

•r

!

for

CO J.^ ..3J "50C SCO 600

FR-OUEWa

a differential |

' : i M Mi 1 !

^ i i j

\ r /i 1 | j ;7CU bC-G ?00 1,000

4 ^}i^

] inductor^,

waferl-

- 30 -

4 4 25mm

fe- microdot twin axial

10,000 peak

FIGURElayers

oy

5 r ° f

f f ~20 L

s

27. Calibration curve for

^ ; • •

111/ICO 200 300 4C0 500 600

FffcOUENCr

sensor with P2T

yuo 800 900 s.ccc

shock

(Integral Electronic Sensor)

RF(Radiofrequency)

H33fe- .>bfe (1)(2)

FET

r 2dB 300m

- 31 -

copper,

^ AflB^ Shoeotf

^r ^ ^ BNC t m ^ l - ^}-§-t>cK &Mk^ -45<Hl- i 801C

H ^-^SIT:]-. ^ ^ - 7 1 ^ 1.0 fN rms^u} 4 ^ ^ - ^ 3]*i

40dB 7)1*1 7 ] ^ i - 7f^l4. # ^ 7 l f e 50S #

1 ^ ^ ^ B^ % 1 28 V 15

^«H 500ffiz7> 4-§-7l-^^]-t:>. ^ ^ ^i^l- ^lA-|fe 20^1 -1 lOOkflz

band-pass ^ ^ # 7f?l ^ ^ 2 } ^A-jJ | Af-g-^Vu}. ^ ' ^ ^1^1- A ) ^ 300

band-pass ^ B ] # 7}

o ] e | ^ ^5-*|#-c: New Je r sey^ Lawrencevi 1

Physical Acoustic Corporation^]^

- 32 -

4 £f AE

1. 1*} rimary Sensor Calibration) 0

7}. &M 3.$ -g-oj

- calibration^^) :

- test

*1| j . o]

test block

K 7] Til3

test blocko]

-^2]

- 33 -

1) calibration

source

- 34 -

NBS

methyle methacrylate plastic^ ^ ^

^^r force -^ #H]7> ^ pencil break apparatus

Fig.

Fig.

[ FIGURE 2. Approximate calibrations of a sensorI tfons on biocks of fauc different materials; ai pencil ie-act hrzak was the souf-ce far all .accept

!<• stee! biock c^Jibrstion

!| ' i •v-t-

3 oi •

10.?5 l.b

cmsMeTfrt.

- 35 -

FIGURE 3. Approximate calibrations of a conies!ir«n«i)ucer; conditions arc XtlC same as inFigure 2

> 40

m 20-

iC-

0 P.?1* ( i i ft?J 1.0 --2E ! !FBbOUsNCY

ree.

METtm. MCTI lATRVIATiH PL'vS! C

j FIGURE 4. Calculated sensitivity Of the corticalI tfartsducsr tn Figure 3 on trie same four• materials; caJcuteticrw ar« based on the theory

for the transducer [see reference 17)

i

i r*-FSFOLKINCY

IEGOJOiTSEt

MfTHVL Mt i H^JCPVI w r riAST. c

(1)

- 36 -

(2)

2) Aperture Effect^}

aperature effect

= ^ - / fs u(x, y, t)rix, y)dydx

S=

A=

u(x,y,t)

. Fig.

r(x,y)=l

c= Rayleigh

= —2 I cos(kx—wf)va2 — x2dx

- 37 -

FIGURE 5. Straight line waves incident on a

Fig. 6 ^ Tfl^l Bessel ^Hr -§-^2}

3) ^g(Surface calibration.

Rayleigh calibration

Rayleigh

effects

source

surface calibration

^c: aperture

4) Through Calibration

source#

3.aperature effetofl

through calibration^] 1} p-wave calibrationo]"c]\ through calibration

- 38 -

FIGURE ft. Results of the calculation of Equation 4compare** with experiments! results from acapac/tive disk sensor; souraHta-reoeiver distance(d| is 0.1 mj transducer radius |a] ij IC mm;surface pulse generated by a taptllary break onthe NBS steeJ bloc*

i :•...

lu i

i H

a G.1 0.2 i:

LESEMO

; (!.<• C.5 « 6 OS 0.1 1.0

5) Step-force Calibration

step-force &.$S>] 7}^

fe ^o]u}. step

source

step source^

3l7l-§-%*(Capacitive)

NBS(National Bureau of Standard)^

0.43m HB]J

fe. ^ | ^ 0.9m,

source^]

- 39 -

sourceif receiver-^- 0.1m

through £.%*\] tflsfl, *

t} . step * K ^ 5 l 5:7]Sfe

lOOjas ^-^r lOOffiz JA-] lilt

o ^ H f ^ l g o ^ ^ J ^ ^ ] ^ ^ f l ^ f transient

record^] *|#©] 5]J1 H ^ ^ ^ ^ ^ H - ^ S . M^W &^$\ *r*\*r -§•^ 3.7] if ^

%v ^># €• ^ ^ *<W S ^ € step-force

Through ^ ^

^ 5 ^ through

180° ^ ^ ^ ^ 1 ^ 1 - 7}Q Jt^S^f <^w> .<g 4 0 ] ^

S - ^ 3 ^ ^ - 3.7lS.-f-Bl <*>!: ^ 5lc>. NBS

lOOkfe lA-1 1MBZO)UK

A)

7]

- 40 -

FIGURE 7. Schematic diagram of the surface pulseapparatus

CHARGE STORAGEAMPLIFIER OSCfLiOSCOPE

LOADING SCREWPZTDISK.

CAPILLARYSOURCE

UNDER TEST

\ V

STEEL BLOCK'

CAPACIWESENSOR

TRANSIENTRECOROER

COMPUTER

TRANSIENT RECORDER

6) Reciprocity Calibration14'

(1)

(2)

o| -amplifier)7>

source receiver

7 | . A)~§-S1U}-I*I ^]-T4fe s o u r c e ^

l receiver s£\x\77\x}<>l

fe receiver^

[if- passive

source

o]nj

- 41 -

£ source^] A] receiver £|*1 77\*\$\

green ^H*fe <y-JL $W<>) W . <>1 ^ r f e reciprocity

-§-71 g

(NBS l

Nippon 1 -

through .

1976^^1 ^?P

$ £.% ^Hlfe

Rayleigh J t ^

c j ^ Nippon ^

^ ^ 1.1m ^ '

§(NBS^ S ^ 2

•1^# ^*>$d^

°1 0.76m£|

}. Rayleigh

61

lOOHfeoflA-1

7].^ol step force

<H7]A-1 step force JiL^^r reciprocity

aperture^1 JL^fe step force JSL^sf

2. 2 > 3 .^2f - M A]^(Secondary Calibration and Sensor Tests)

7\.

- 42 -

-S-^-i-alii}

7]

oil

- High Fidelity Transducers

Fig. 8^r NBS

step

pre-ampli f ier i - 7>^1 NBS5}-

- 43 -

FKStinE 8. Conical transducer's output (lowercurve| from a glass capillary breaking on a iargesteer plate compared to the output of acomputer program's calcutation (upper curve) ofthe Green's function of the steel plane

ii 0.0 •

i 0.2 '

5= -02 i —

O -C

y -•'"

v

5 3.C 3.5 ' 0

NQIVDIMENSIONIAL

.:. 5 0 5 5 /.<

- Computer Program for Secondary Calibration

OL^o] (l) (2) source (3) source to sensor JS.%

4^

ASTM

3. 11)

4,

- 44 -

*] xo\}*\*] £ ^ Ui(tm Green's function G

Green's functions] i H £ # 3 ^ <&%

^ o | convolution^^.

«,{*, d = ^ / /Gijix,x:t-r) F,{x , r)i&'rfr (1)

(2)

Green's function G7}

F(d# -^ £ $1^}. Green's function^

delta function S.^ step function^ o|-g-*fo^ ^ ^ ^ ^ S ^-%£ $1

F(t)=Sit)^l ^^-^ ^ ^ «(dfe Green's functionAS. U

step forced, ^ ^ l ^ ] 1 ^ ^.4] «(dfe Green's functional

step forced] ix|-g- Green's function, GHS -2}

. delta function £.tfe step functiono] o|

Green's function, G# ^ ^ * f 4 ^ c K ^ ^ ^ - ^ - ^ ^°1^lfe G JEfe GH ^}JL Sd^HS. i r ;} ^%^«y Green's function^ ^

source function D(t)e}

|.^ O1-^A1^- G(t),

s(t)e|- -&1-JI, AE 3

- 45 -

convolution

(3)

°14

AI^K ^1# # ^ . source function D(t)fe t^w^f -?

>~l (5)

3E., sj- r ^5] source H" ZXo,)^ n ^ ] S 4

fe- sensor^)

6v. t) = K (. y yyLr\ t) YS)D\ t) \ I)

^ ^ 3 . fe source ^H*Sj- Green

forward problemojcf.

- 46 -

S(co) =

Point step impulsive force (Fj) J£-fe Point linear

ramp force dipole(Fj,k)S. 7}^}JL Green ^ * M - <>]-§-€H

NIST5] Dr. Hsu7} ± S Plate

Green function (G)SJ : 33

: 3.2 mm/jus

. : 5.9 mm//«

Plated ^f-4 : 50 mm

SourceAj- Detector *}

Source^ Z ^ S ^

Sampling time interval : 0.1 JJS

Number of sampling points : 500 ( 1 11 1024)

Plated Shear Modulus : 79. 87 X 103 N/mm2

: 100 mm

= 0.5 (Source^} Detector7}

Hsu ^^ZL*£

7^ 27W ZL^xc

- 47 -

1.0x10' -i

5.0x10"* -

£. o.o-

I1I -5.0x10"1-8-5

-1.0x10"'-

-1.5x10'-30 40 50

Time (us)

8.0x10"S

4.0x10"' -

2.0x10"'-

0.0-

-2.0x10"'-

30 40 50

Time (jis)

rfl

- 48 -

5 g- AE

X[

2 . ASTM

E 610 ^ i M

E 650 <y-^ AE

E 750 AE

-§-<H

3.

AE

AE ^ > H f e

^ ( l ) (2)

- 49 -

(3)

(4)

4.

AE

o)uf.

x\

- 50 -

5.

(3) <&$. 4 ^ (4)(1)

51

AE ^ (2)

. EXPERIMENTAL SET-UP WITH SPECTRUM ANAIVZEK

b. EXPERIMENTAL SET-UP WITH AC VOLTMETER ftLOO COMVERTEd

c. EXPERIUEHTAL SET-UP WITH TRANSIENT AE AHALYZER

71

1)

10S.

- ZLQ 2°\] Beattle 10cm

- 51 -

*H ^% 2.5cm#

0.8/

2) Gas-Jet

3(a)oj|

50mm OlA SURFACE

FINISH : 3 V^ e NOTEDBREAK EOSES 0.1 mm MAX .

- 27^ Gas-jet H ^ I 30ft

gas-jet 2}

- 52 -

MOIZU-^

\

o . .

i—U

\

\i ^

\ !

i j

\th- j

i

p rt«*< OIAECL M.OCK

MKBC«

©eKSOR

FOSIItOKBftACKCT

\

\

vd

(«: Opposite S!::f»

KO2ELS W1T-" eUlhOCK «OLD-K)Wh~

gas-jet

31} <5j*fl

| 5.0 MHz

1.25cm7>

3.711

50 200 KHz -§•

7}) White noise

train0] -f -

- 53 -

3.7\]

o}2.

10

V

Generator) -

-. ©1

7H©>*}3. - ^ ^ ^

^ X-Y

(2.25 MHz 0.22

A S 10ms

100 ^ i ©I*}) ZLefH cfg- 47} <H7]Sj7]

ef) ^ > i AE

200 KHz

*>

2) 7 1 ^ - ^ - ^

150 2} 200 KPa

*7l, *|#

3(b)

- 54 -

3) £ ^

Til ^ t n

tflsfl

nil

. Hsui]

Nielsen shoefe

0.3mm 0.5mm

1)

l ^ 2-3mm

coaxial

7}^-

- 55 -

bandpass^

2 kG o]Aj. o j ^

^ ^ - f 40 a f e 60 dB 7j|olo|

20^1^ 1200 kHz

2) ^^Js.*

sweep

MHz

50

^r tracking

7fl

20 1.2

3. ^ X-Y

- 56 -

3)

£ : 10 kHzoJH 2 MHz Hat

XY

5.4.3.1 Rms

rms

4) fe AE A l ^

10 ^ ^

AE ^ ^ M i r ^ 1 ^ 20

4

5)

7]

XY

- 57 -

6.

. 3L7] overriding

clipping

7.

3 dB Jtuf

4 dB

, 6 dB A E

- 58 -

6 # AE

4:2.

3.4

©1 ©1 371

4

oil

- 59 -

2.

7)1

71)

7]

1970\i Peach Bottom

Battelle Memorial Instituted] Pacific Northwest

Lab(BMI-PNL)^l

C}. ©] £ o

Loose part

Bfl

300-500

- 60 -

A533B

63

ml/sec

63 g/sec

4

1^^| o]

CANDU

3807H ^-«.

300-600 kHz

# 0.3 ml/sec

8.3 MPa

- 61 -

1) ASTM E1106-86, "Standard method for primary calibration of

acoustic emission sensor", (Philadelphia, PA: ASTM)

2) ASTM E976-84, "Standard guide for determining the reproducibility

of acoustic emission sensor response", (Philadelphia, PA: ASTM)

3) Y. H. Kim and H. C. Kim, "Source function determination of glass

capillary breaks", J. Phys. D: Appl. Phys., Vol.26, pp.253-258

(1993)

4) %<$& -§s " ^ - ^ t ^ A"£". KRISS-92-079-IR,

(1992)

5) N. N. Hsu, J. A. Simmons, and S. C. Hardy, "An approach to

acoustic emission signal analysis-Theory and Experiment," Material

Evaluation, Oct. 1977.

6) l H s l o l - g - 7 ] ^ ^ , #%>a<J-#, (1995)

7) D.G.Eitzen et.al., "Summary of fundamental development for

quantitative acoustic emission measurements", EPRI Report NP-1877,

National Bureau of Standards, MD (1981)

8) Nondestructive Testing Handbook, Vol 5, Acoustic Emission

Testing, American Society of Nondestructive Testing, Inc, (1987)

9) F. R. Breckenridge, T. M. Proctor, N. N. Hsu, S. E. Fick and D.

- 62 -

G. Eitzen, "Transient sources for acoustic emission work", Progress

in Acoustic Emission V, Jap. Soc. ND1, p. 10 (1990)

10)

%*ticM^N3 ^ 8 . " V&&7]&*M&*t$\x]. 123L 1231, pp.1119-1125, 1999.

11) J.E. Michaels, T.E. Michaels, and W. Sachse, "Applications of

deconvolution to acoustic emission signal analysis," Material

Evaluation, Vol. 39, Oct. 1981.

12) M. Shiwa, H. Inabe, S.H. Carpenter, and T. Kishi, "Development

of high-sensitivity and low-noise integrated acoustic emission

sensor," Material Evaluation, July 1992.

13) M. G. Silk, Ultrasonic Transducers for Nondestructive Testing,

Adam Hilger Ltd., 1984.

14) W. Sachse and N.N.Hsu, "Ultrasonic Transducers for Material

Testing and their Characterization, " Chapter 4, Physical Acoustics,

Vol. 14, W.P.Mason and R.N.Thurston, Eds., Academic Press, NY(1979),

pp. 277-405.

15) I.G. Scott, Basic Acoustic Emission, Gorden and Breach Science

Publishers, 1991.

16)

JL, PP. 1198-1206, 1999.

- 63 -

IMS

KAERI/TR-1691/2000

2000

63 p. S. 3. 7) Cm.

(15-20

ASTM E1106 standard^]

lfe AE

o.a AE

«gs}. #

fe ASTM E976 standard

-§-§-

AE ^ ^ f f , AE

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.Standard Report No. INIS Subject Code

KAERI/TR-1691/2000

Title / Subtitle Characteristic Evaluation of Acoustic Emission Sensors

Project Manager

and DepartmentHyun-Kyu Jung(Quantum Optics Lab.)

Researcher and

DepartmentY.S. Joo(KALIMER), N.H. Lee(Quantum Optics Lab.)

Publication

PlaceTaejon Publisher KAERI

Publication

Date2000

Pagep. 63

111. & Tab. Yes( o), No ( ) SizeCm.

Note

Classified Open( o ), Restricted(

Class DocumentReport Type Technical Report

Sponsoring Org. Contract No.

Abstract

Lines)

(15-20

This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the

basic principle of AE sensors in order to select AE sensor suitably. The described sensors

include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor,

directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability

and repeatability. For the high reliability, sensor has to be calibrated in accordance with

ASTM standard E 1106 which explains to measure the characteristics of AE sensor

accurately. For investigating the degradation of AE sensor under the severe environment for

example the high radiation condition, It is important to perform the repeatability test which

is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor

applications are also summarized.

Subject Keywords

(About 10 words)

Acoustic Emission(AE) sensor, AE sensor types, AE sensor

calibration, AE sensor degradation.

top related