chapter 6 differential analysis of fluid flow student

Post on 03-Oct-2021

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Offered by: Hang-Suin Yang

Chapter 6

Chapter 6 Differential Analysis of Fluid Flow

Outline

6.1 Fluid Element Kinematics

6.2 Conservation of Mass

6.3 The Linear Momentum Equation

6.4 Inviscid Flow

6.5 Some Basic, Plane Potential Flows

Outline

6.6 Superposition of Basic, Plane Potential Flows

6.7 Other Aspects of Potential Flow Analysis

6.8 Viscous Flow

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

6.10 Other Aspects of Differential Analysis

6.1 Fluid Element Kinematics

We can break the element's complex motion into four components: translation, rotation, linear deformation, and angular deformation.

6.1 Fluid Element Kinematics

6.1.1 Velocity and Acceleration Fields Revisited

i j kV u v w

This method of describing the fluid motion is calledthe Eulerian method. It is also convenient to expressthe velocity in terms of three rectangular componentsso that

D

D

i j

k

i j kx y z

V V V V Va u v w

t t x y z

u u u u v v v vu v w u v w

t x y z t x y z

w w w wu v w

t x y z

a a a

6.1 Fluid Element Kinematics

The acceleration of a fluid particle can be expressed as

material derivative

or substantial derivative

D( )

Du v w V

t t x y z t

where

6.1 Fluid Element Kinematics

6.1.2 Linear Motion and Deformation

V x y

6.1.2 Linear Motion and Deformation

u tu

u x tx ( V)

u ud u x t y u t y x y t

x x

6.1 Fluid Element Kinematics

( V) Vu u

d x y t tx x

the rate at which the volume is changing per unit volume due to the gradient ∂u/∂x is

V

0

1 ( V) lim

V t

d u t u

dt x t x

1-D

6.1 Fluid Element Kinematics

If velocity gradients ∂v/∂y and ∂w/∂z are also present, then

1 ( V)

V

d u v wV

dt x y z

Volumetric dilatation rate

3-D

For an incompressible flow

6.1 Fluid Element Kinematics6.1.3 Angular Motion and Deformation

Rotation

Deformation

Rotation + Deformation

6.1 Fluid Element Kinematics

u t

v t vv x t

x

uu y t

y

uy t

y

vx t

x

x

y

6.1 Fluid Element Kinematics

uy t

y

vx t

x

x

y

O A

B

OA t t tv

x

( )v

x t xx

dl rd

Similarly

OB

u

t y

6.1 Fluid Element Kinematics

1

2

1

2

v uvx yx

u v uy x y

z

Similarly

1 1 1 , ,

2 2 2x y z

w v u w v u

y z z x x y

6.1 Fluid Element Kinematics

1i j k i j k

2

1

2

x y z

w v u w v u

y z z x x y

V

The three components, ωx, ωy, and ωz can be combined to give the rotation vector, ω, in the form

The vorticity, ζ, is defined as a vector that is twice the rotation vector; that is,

2 V

6.2 Conservation of Mass

xm

y ym

x xm

ym

zm

z zm z

x

y

y

x

z

( )

( )

CVin out

x y z

x x y y z z

mm m

tm m m

m m m

Conservation of mass

6.2 Conservation of Mass

,

,

,

xx x x x x

yy y y y y

zz z z z z

m um u y z m m x m x y z

x xm v

m v x z m m y m x y zy y

m wm w x y m m z m x y z

z z

( )CVmx y z x y z

t t t

where

6.2 Conservation of Mass

0 0

0

( ) 0

CVin out

mm m

t

u v wx y z x y z

t x y z

u v wV

t x y z t

u v wu v w

t x y z x y z

DV

Dt

Continuity Equation

6.2 Conservation of Mass6.2.2 Cylindrical Polar Coordinates

Div in cylindrical coordinates

( )( ) ( )1

( )( ) ( )1 1

r z

r z

vr v r vV

r r z

vr v v

r r r z

( , , )p r z

z

r

x

y

z

reθe

ze

Continuity equation

( )( ) ( )1 10r zvr v v

Vt t r r r z

6.2 Conservation of Mass

6.2.3 The Stream Function

Steady, incompressible, two-dimensional flow field can be expressed in terms of a stream function.

( ) 0

0

DV

Dt

u v wu v w

t x y z x y z

Continuity Equation

0u v

x y

6.2 Conservation of Mass

Velocity components in a two-dimensional flow field can be expressed in terms of a stream function.

0 0u v

x y x y y x

u v

ψ(x, y) called the stream function

, u vy x

6.2 Conservation of Mass

0 constantd dx dy vdx udyx y

dy v

dx u

dy v

dx u

6.2 Conservation of Mass

1( , )x y c

2c

3c

4c

1c

2c

3c 4c

6.2 Conservation of Mass

The change in the value of the stream function is related to the volume rate of flow.

d dx dy vdx udy dqx y

the volume rate of flow, q, betweentwo streamlines such as ψ1 and ψ2 canbe determined by

2 1q d

6.2 Conservation of Mass

In cylindrical coordinates the continuity equation for incompressible, plane, two-dimensional flow reduces to

( )( ) ( )1 10r zvr v v

Vt t r r r z

( )1 1 0r vrv

r r r

( )1 1 1 1 r vrv

r r r r r r r

6.2 Conservation of Mass

( )1 1 1 1 0r vrv

r r r r r r r

1

r rrv v

r

v vr r

6.3 The Linear Momentum EquationTo develop the differential momentum equations we can start with the linear momentum equation (Newton's Second Law)

CV n

sys

CS

DPF

Dt

VdV V V dAt

6.3 The Linear Momentum Equation

Conservation of momentum

ii i i

( )CV

inlet outletports ports

mvmv mv F

t

6.3 The Linear Momentum Equation

xm

y ym

x xm

ym

zm

z zm z

x

y

y

x

z

ii i

i

( )

CV

inlet outletports ports

mvmv mv

t

F

6.3 The Linear Momentum EquationIn x-direction

y

z

x

x

u y z u u y z uu y z u x

x

v x z u

, u

v x z uv x z u y

y

u y z u u y z uu y z u x

x

w x y u

w x y uw x y u z

z

, u

i( )( )CVmv

x y z ut t

uu x y z

t t

Newton`s second law of motion

Momentum carried by flow

2i

i

i

inlet at x

inlet at y

inlet at z

mv u y z u u y z

mv v x z u uv x z

mv w x y u uw x y

6.3 The Linear Momentum EquationIn x-direction

y

z

x

x

u y z u u y z uu y z u x

x

v x z u

, u

v x z uv x z u y

y

u y z u u y z uu y z u x

x

w x y u

w x y uw x y u z

z

, u

i i i

2 2

i i i

i i i

( )

( )

(

inlet at x x inlet at x inlet at x

inlet at y y inlet at y inlet at y

inlet at z z inlet at z inlet at z

mv mv mv xx

u y z u x y zx

mv mv mv yy

uv x z uv x y zy

mv mv mv zz

uw x y uwz

) x y z

6.3 The Linear Momentum EquationIn x-direction

2i i ( ) ( ) ( )

inlet outletports ports

mv mv u x y z uv x y z uw x y zx y z

u v wu x y z

x y z

u u v w x y zx y z

u u uu v w x y z

x y z

6.3 The Linear Momentum Equation

ii i i

i

i

i

( )

D( )

D

D

D

CV

inlet outletports ports

mvmv mv F

t

u u v wu u u u v w

t t x y z x y z

u u uu v w F

x y z

u Du V F

t Dt

uF

t

6.3 The Linear Momentum Equation6.3.1 Description of Forces Acting on the Differential Element

In x-direction Body force: (Ex. gravity)

,body x x xF x y z g g x y z

xx

y

z

x

xz

xy

Surface force: (Ex. pressure, viscous force)

,xx xy xz

Direction offorce

Direction ofsurface

Normal stress Shear stress

yy

yz

yx

zz

zxzy

6.3 The Linear Momentum EquationIn x-direction

Surface forces:

,

,

,

,, ,

,, ,

,, ,

sur x xx

sur y yx

sur z zx

sur x xxsur x x sur x xx

sur y yxsur y y sur y yx

sur z zxsur z z sur z zx

F y z

F x z

F x y

FF F x y z x y z

x xF

F F y x z x y zy y

FF F z x y x y z

z z

y

z

x

x

xx y z xx

xx x y zx

yx x z

yxyx y x z

y

xx y z xx

xx x y zx

zx x y

zxzx z x y

z

6.3 The Linear Momentum EquationIn x-direction

,i , , , , , ,sur sur x sur x x sur y sur y y sur z sur z z

yxxx zx

F F F F F F F

x y zx y z

y z

x x

xx y z xx

xx x y zx

yx x z

yxyx y x z

y

xx y z xx

xx x y zx

zx x y

zxzx z x y

z

6.3 The Linear Momentum Equation

D

Dyxxx zx

x

u u u u uu v w g

t t x y z x y z

In x-direction

In y-direction

In z-direction

D

Dxy yy zy

y

v v v v vu v w g

t t x y z x y z

D

Dyzxz zz

z

w w w w wu v w g

t t x y z x y z

6.3.2 Equations of Motion

6.4 Inviscid Flow

The shearing stresses are assumed to be negligible are said to be inviscid, nonviscous, or frictionless.

The negative sign is used so that a compressive normal stress (which is what we expect in a fluid)

will give a positive value for p.

xx yy zz p

0yx zx xy zy xz yz

6.4 Inviscid Flow6.4.1 Euler's Equations of Motion

D

D x

u u u u u pu v w g

t t x y z x

In x-direction

In y-direction

In z-direction

D

D y

v v v v v pu v w g

t t x y z y

D

D z

w w w w w pu v w g

t t x y z z

6.4 Inviscid Flow

D

D

D

D

D

D

x

y

z

u u u u u pu v w g

t t x y z x

v v v v v pu v w g

t t x y z y

w w w w w pu v w g

t t x y z z

( )V

V V g pt

Euler's equations of motion

6.4 Inviscid Flow6.4.2 The Bernoulli Equation

We will restrict our attention to steady flow so Euler's equation in vector form becomes

( )V

V V g pt

Body force

kg g g z

6.4 Inviscid Flow

( )V V g p

Euler's equations of motion

1( ) ( ) ( )

2V V V V V V

use

then

1( ) ( )

2

pV V g z V V

6.4 Inviscid Flow

1( ) ( ) 0

2

pV V g z ds V V ds

Take the dot product of each term with adifferential length ds along a streamline.Thus,

ds

( )V V ds

where i j kds dx dy dz

6.4 Inviscid Flow1

( ) 02

pV V g z ds

where1

i j k ( i j k)

1

p p p pds dx dy dz

x y z

p p p dpdx dy dz

x y z

similarly

2 21 1 1( ) ( )

2 2 2V V ds V ds dV

g z ds gdz

6.4 Inviscid Flow

2 2

2

1 ( ) 0

2

1 1 0 0

2 2

1 constant along a streamline

2

pV V g z ds

dp pdV gdz d V gz

pV gz

Bernoulli equation

6.4 Inviscid Flow

6.4.3 Irrotational Flow

The vorticity is zero in an irrotational flow field.

If we make one additional assumption—that the flow is irrotational—the analysis of inviscid flow problems is further simplified.

2 0V

, , w v u w v u

y z z x x y

6.4 Inviscid Flow

flow in the entrance toa pipe may be uniform(if the entrance isstreamlined) and thuswill be irrotational

6.4 Inviscid Flow6.4.4 The Bernoulli Equation for Irrotational Flow

The Bernoulli equation can be applied between any two points in an irrotational flow field.

1( ) ( ) 0

2

pV V g z ds V V ds

21 constant is not limited along a streamline

2

pV gz

6.4 Inviscid Flow6.4.5 The Velocity Potential

For an irrotational flow 0V

We know that ( ) 0

So we can let

i j k i j kV u v wx y z

ϕ is called the velocity potential

6.4 Inviscid Flow

w v

y z y z z y

u w

z x z x x zv u

x y x y y x

, , u v wx y z

check

The velocity components

6.4 Inviscid Flow

For inviscid, incompressible,irrotational flow fields it followsthat

2

0

0 0

V

V

Laplace's equation

This type of flow is commonly called a potential flow.

6.5 Some Basic, Plane Potential Flows

2 22 2

2 2

i j k

0 0

0

Vx y z x y

y x

Laplace's equation

Similarly, for the streamlines in an irrotational flow

0 i jV Vy x

then

6.4 Inviscid Flow

Laplace's equation in cylindrical coordinates

1r zv v v

r r z

r θ z r θ ze e e e e e

1 , , r zv v v

r r z

2 22

2 2 2

1 10r

r r r r z

Velocity components in cylindrical coordinates

6.5 Some Basic, Plane Potential Flows

Cartesian coordinates

u ux y

orv v

y x

Cylindrical coordinates

1

1

r rv vr ror

v vr r

6.5 Some Basic, Plane Potential Flows

=conatant

0 along

dy ud dx dy udx vdy

x y dx v

=conatant

0 along

dy vd dx dy vdx udy

x y dx u

Along = constant (called equipotential lines)

Along = constant (called streamlines)

=conatant =conatant

1along along

dy dy u v

dx dx v u

6.5 Some Basic, Plane Potential Flows

For any potential flow field a “flow net” can be drawn thatconsists of a family of streamlines and equipotential lines.

6.5 Some Basic, Plane Potential Flows6.5.1 Uniform Flow

1

2

0

0

u Ux

Ux Cv

y

u Uy

Uy C

vx

C is an arbitrary constant, which can be set equal to zero

6.5 Some Basic, Plane Potential Flows

cos

( cos sin )sin

cos

( cos sin )

sin

u Ux

U x yv U

y

u Uy

U y x

v Ux

6.5 Some Basic, Plane Potential Flows6.5.2 Source and Sink

Source

Let m be the volume rate of flow

2 2r r

mm rv v

r

1

2 2 1

0 0

r r

m mv v

r r r ror

v vr r

6.5 Some Basic, Plane Potential Flows

2 ln1 2

0

1

2 2

0

r

r

mv

mr r r

vr

mv

mr r

vr

6.5 Some Basic, Plane Potential Flows

Sources and sinks do not really exist in real flowfields, and the line representing the source or sink is amathematical singularity in the flow field.

02r r

mv v as r

r

If m is positive, the flow is a source flow.

If m is negative, the flow is a sink flow.

The flowrate, m, is the strength of the source or sink.

6.5 Some Basic, Plane Potential Flows6.5.3 Vortex

0

1

10

ln

r

r

vr K

Kv

r r

vr K r

Kv

r r

where K is a constantK

vr

6.5 Some Basic, Plane Potential FlowsIrrotational flow Rotational flow

Both sticks are rotating, theaverage angular velocity of thetwo sticks is zero and the flow isirrotational

The rotational vortex iscommonly called a forced vortex,whereas the irrotational vortex isusually called a free vortex.

6.5 Some Basic, Plane Potential Flows

A mathematical concept commonly associated with vortex motion is that of circulation.

V ds

0 0 0V ds ds d

For an irrotational flow

6.5 Some Basic, Plane Potential Flows

2K

V ds v rd rd Kr

2

K

2

ln2

r

6.5 Some Basic, Plane Potential Flows6.5.4 Doublet

A doublet is formed by an appropriate source-sink pair.

6.5 Some Basic, Plane Potential Flows

1 12

m

2 22

m

2 0

Laplace's equation

is linear2 2

1 2

2 21 2

( )

0

Superposition of is allowed

1 2 1 2 1 2( )2 2 2

m m m

6.5 Some Basic, Plane Potential Flows

1 21 2

1 2

tan tan2tan tan( )

1 tan tanm

where

1 2

sin sintan , tan

cos cos

r r

r a r a

then

12 2 2 2

2 2 sin 2 sintan tan

2

ar m ar

m r a r a

6.5 Some Basic, Plane Potential Flows

The so-called doublet is formed byletting the source and sink approachone another (a → 0) while increasingthe strength m (m → ∞) so that theproduct ma/π remains constant.

sin where

K maK

r

12 2 2 20 0

2 sin 2 sin sinlim tan lim

2 2a a

m ar m ar ma

r a r a r

cosor

K

r

6.6 Superposition of Basic, Plane Potential Flows6.6.1 Source in a Uniform Stream—Half-Body

sin2 2

ln cos ln2 2

uniform flow source

uniform flow source

m mUy Ur

m mUx r Ur r

6.6 Superposition of Basic, Plane Potential Flows

0 , rv at r b

1 1sin

2

cos2

r

mv Ur

r r

mU

r

0 cos 2 2

m mU b

b U

sin sin2 2 2stagnation

m m mUr Ub bU

6.6 Superposition of Basic, Plane Potential Flows

2

mb

U

6.6 Superposition of Basic, Plane Potential Flows

sin2

sin

stagnation

mbU Ur

Ur bU

( )

sin

br

sin ( )y r b

sin sin2

mv Ur U

r r

and

6.6 Superposition of Basic, Plane Potential FlowsApplying the Bernoulli equation between a point farfrom the body, where the pressure is p0 and the velocityis U, and some arbitrary point with pressure p andvelocity v, it follows that

22 2 2 2 2

0

22

2

1 1 1( ) cos sin

2 2 2

1 1 2 cos

2

r

bUp U p v v p U U

r

b bp U

r r

6.6 Superposition of Basic, Plane Potential Flows

An important point to be noted is that the velocity tangent to the surface of the body is not zero; that is, the fluid “slips” by the boundary

6.6 Superposition of Basic, Plane Potential Flows6.6.2 Rankine Ovals

sink

12 2

12 2 2

2 sin tan

2

2 tan

2

uniform flow source

m arUy

r a

m ayUy

x y a

6.6 Superposition of Basic, Plane Potential Flows

12 2 2

2 2 2

2 2 2 2 2 2 4

12 2 2

2 2 2 2 2 2

2tan

2

2 ( )

2 ( ) 2 ( )

2tan

2

4

2 ( ) 4

m ayu Uy

y y x y a

m a x y aU

x y a x y a

m ayv Uy

x x x y a

m axy

x y a a y

6.6 Superposition of Basic, Plane Potential Flows

0 , 0u v at x l y

2 2 2

2 2 2 2 2 2 4 2 2

2 ( 0 )0

2 ( 0 ) 2 ( 0 ) ( )

m a l a m au U U

l a l a l a

1/2

1l m

a U

6.6 Superposition of Basic, Plane Potential Flows

12 2 2

2tan 0 , 0

2tagnation

m ayUy at x l y

x y a

0 0 , tagnation at x y h

12 2 2

2 2

2 tan 0

2 0

2 tan

2

m ahUh

h a

h a Uhh

a m

6.6 Superposition of Basic, Plane Potential Flows

1.A large variety of body shapes with differentlength to width ratios can be obtained by usingdifferent values of Ua/m

2.The potential solution for the Rankine ovalswill give a reasonable approximation of thevelocity outside the thin, viscous boundarylayer and the pressure distribution on the frontpart of the body only.

6.6 Superposition of Basic, Plane Potential Flows

6.6 Superposition of Basic, Plane Potential Flows6.6.3 Flow around a Circular Cylinder

sin sin sin

cos cos cos

uniform flow doublet

uniform flow doublet

K KUy Ur

r r

K KUx Ur

r r

6.6 Superposition of Basic, Plane Potential Flows

The stream function for flow around a circular cylinder

0 , 0, rv at r a

2

1 1 sinsin

cos

r

Kv Ur

r r r

KU

r

22

cos 0 K

U K a Ua

6.6 Superposition of Basic, Plane Potential Flows

2 2

2 21 sin and 1+ cos

a aUr Ur

r r

Then

2

2

2

2

11 cos

1+ sin

r

av U

r r

av U

r r

0 rv at r a

2 sin sv U at r a

6.6 Superposition of Basic, Plane Potential Flows

The pressure distribution on the cylinder surface is obtained from the Bernoulli equation.

2 2 20

2 2 2

1 1( )

2 21

2 sin2

s r

s s

p U p v v

p v p U

2 20

1 (1 4sin )

2sp p U

6.6 Superposition of Basic, Plane Potential Flows

6.6 Superposition of Basic, Plane Potential FlowsThe resultant force (per unit length) developed on the cylinder can be determined by integrating the pressure over the surface.

2

0

2

0

cos 0

sin 0

x s

y s

F p a d

F p a d

升力

阻力

Potential theory incorrectly predicts that the drag on a cylinder is zero.Why?

6.6 Superposition of Basic, Plane Potential Flows

An additional, interestingpotential flow can bedeveloped by adding afree vortex to the streamfunction or velocitypotential for the flowaround a cylinder. In thiscase

6.6 Superposition of Basic, Plane Potential Flows

2 2

2 21 sin ln or 1 cos

2 2

a aUr r Ur

r r

2

21+ sin 2 sin

2 2s

av U v U

r r r a

The tangential velocity, vθ, on the surface of the cylinder (r = a) now becomes

6.6 Superposition of Basic, Plane Potential FlowsAt stagnation point, vθs = 0

2 sin 0 sin2 4s stag stagv U

a Ua

6.6 Superposition of Basic, Plane Potential Flows

The pressure distribution on the cylinder surface is obtained from the Bernoulli equation.

22 2

0

1 1 12 sin

2 2 2 2s sp U p v p Ua

22 2

0 2 2

1 2 sin 1 4sin

2 4sp p UaU a

6.6 Superposition of Basic, Plane Potential Flows

6.6 Superposition of Basic, Plane Potential Flows

2

0

2

0

cos 0

sin

x s

y s

F p a d

F p a d U

x

y

The development of this lift on rotating bodies is called the Magnus effect.

6.7 Other Aspects of Potential Flow Analysis

1.The method of superposition of basic potentials andstream functions has been used to obtain detaileddescriptions of irrotational flow around certain bodyshapes immersed in a uniform stream.

2.It is possible to extend the idea of superposition byconsidering a distribution of sources and sinks, vortexes,or doublets, which when combined with a uniform flowcan describe the flow around bodies of arbitrary shape.

6.7 Other Aspects of Potential Flow Analysis

3.Potential flow solutions are always approximatebecause the fluid is assumed to be frictionless.

4.An important point to remember is that regardless ofthe particular technique used to obtain a solution to apotential flow problem, the solution remainsapproximate because of the fundamental assumption ofa frictionless fluid.

6.7 Other Aspects of Potential Flow Analysis

Outer flowNeglect viscosity Vorticity = 0 Inner flow

Viscosity is importantVorticity generated

Wake regionViscosity is not importantVorticity ≠ 0

6.8 Viscous Flow

For incompressible Newtonian fluids it is known that the stressesare linearly related to the rates of deformation and can beexpressed in Cartesian coordinates as (for normal stresses)

xx

y

z

x

xz

xy

yy

yz

yx

zz

zxzy 2

2

2

xx

yy

zz

u u up p

x x x

v v vp p

y y y

w w wp p

z z z

stresses are linearly related to the rate of strain

6.8.1 Stress-Deformation Relationships

xx

y

z

x

xz

xy

yy

yz

yx

zz

zxzy

(for shearing stresses)

6.8 Viscous Flow

xy yx

yz zy

zx xz

v u

x y

w v

y z

u w

z x

6.8 Viscous Flow

In cylindrical polar coordinates the stresses for incompressible Newtonian fluids are expressed as

2

12

2

rrr

r

zzz

vp

rv v

pr r

vp

z

1

1

rr r

zz z

r zzr rz

v vr

r r r

v v

z r

v v

z r

6.8 Viscous Flow

In x-direction

In y-direction

In z-direction

D

Dyxxx zx

x

u u u u uu v w g

t t x y z x y z

D

Dxy yy zy

y

v v v v vu v w g

t t x y z x y z

D

Dyzxz zz

z

w w w w wu v w g

t t x y z x y z

6.8.2 The Navier-Stokes Equations

6.8 Viscous FlowIn x-direction

In y-direction

In z-direction

The Navier-Stokes equations are the basic differential equationsdescribing the flow of Newtonian fluids.

2 2 2

2 2 2

D

D x

u u u u u p u u uu v w g

t t x y z x x y z

2 2 2

2 2 2

D

D y

v v v v v p v v vu v w g

t t x y z y x y z

2 2 2

2 2 2

D

D z

w w w w w p w w wu v w g

t t x y z z x y z

6.8 Viscous Flow

Navier-Stokes equation in cylindrical coordinates

2 2 2

2 2 2 2

( )1 1 2r r r r r r rr z r

v v vv v v v rv v vpv v g

t r r r z r r r r r r z

r-direction:

θ-direction:

z-direction:

2 2

2 2 2 2

( )1 1 1 2

rr z

r

v v v v v v vv v

t r r r z

rv v vvpg

r r r r r r z

2 2

2 2 2

1 1z z z z z z zr z z

vv v v v v v vpv v g r

t r r z z r r r r z

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

1. A principal difficulty in solving the Navier-Stokes equations is their nonlinearity arising from the convective acceleration terms.

2. The Navier-Stokes equations apply to both laminar and turbulent flow, but for turbulent flow each velocity component fluctuates in an apparently random fashion, with a very short time scale, and this added complication makes an analytical solution intractable.

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

6.9.1 Steady, Laminar Flow between Fixed Parallel Plates

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

D

D

D

D

D

D

x

y

z

u p u u ug

t x x y z

v p v v vg

t y x y z

w p w w wg

t z x y z

2

20

0

0

p u

x y

pg

y

p

z

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

1

22

1 1 22

0 ( , )

( )

1 1

2

pp p x y

zp

g p gy f xy

p u u p py c u y c y c

x y y x x

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

21 2 1

22 2

1 2

B.C. 0 at

10 0

2 1

10 2

2

u y h

ph c h c c

xp

c hph c h c x

x

2 21 ( )

2

pu y h

x

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The volume rate of flow, q, passing between the plates (for a unit width in the z direction) is obtained from the relationship

32 21 2

( )2 3

h h

h h

p h pq udy y h dy

x x

The pressure gradient ∂p/∂x is negative, since thepressure decreases in the direction of flow.

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

If we let Δp represent the pressure drop between twopoints a distance ℓ apart, then

3 32 2

3 3

h p h pq

x l

The mean velocity V=q/2h, then

2

3

h pV

l

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The maximum velocity, umax, occurs at y = 0

22 2

max

1 3( )

2 2 2

p h pu y h u V

x x

The pressure gradient in the x direction is constant, then

1 0 0( ) ( 0)p p

f x p x p xx x

0 at 0p p x y where is reference pressure

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

then

1 0( )p

p gy f x gy p xx

3

0 3

2 3

3 2

h p qq p p gy x

x h

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

6.9.2 Couette Flow (g = 0)0 at 0

B.C. at

u y

u U y b

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

D

D

D

D

D

D

x

y

z

u p u u ug

t x x y z

v p v v vg

t y x y z

w p w w wg

t z x y z

2

20

0

0

p u

x y

p

y

p

z

( )p p x

0 at 0B.C.

at

u y

u U y b

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

22

1 22

10

2

p u pu y c y c

x y x

20 at 0 1B.C. ( )

at 2

u y y pu U y by

u U y b b x

In dimensionless form2

12

u y b p y y

U b U x b b

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The simplest type of Couette flow is one for which thepressure gradient is zero; that is, the fluid motion iscaused by the fluid being dragged along by themoving boundary.

2

12

u y b p y y y

U b U x b b b

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

This situation would be approximated bythe flow between closely spacedconcentric cylinders in which onecylinder is fixed and the other cylinderrotates with a constant angularvelocity, ω.

The flow in an unloaded journal bearing might beapproximated by this simple Couette flow if the gapwidth is very small.

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

6.9.3 Steady, Laminar Flow in Circular Tubes

sin

cosrg g

g g

g

rg

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

Continuity equation

( )D 1 1( ) 0 0

Dr zvrv v

V Vt r r r z

The flow is parallel to the walls, then

0 0 ( , ) ( )zr z z z

vv v v v r v r

z

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

Navier-Stokes equations

2 2

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2

D ( )1 1 2

D

D ( )1 1 1 2

D

D 1 1

D

r r r rr

r

z z z zz

vv rv v vpg

t r r r r r r z

v rv v vvpg

t r r r r r r z

v v v vpg r

t z r r r r z

0

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

0 sin

1 0 cos

10 z

pg

rp

gr

vpr

z r r r

Navier-Stokes equations reduced to

sin ( , )p gr f z

sin ( , )p gr h r z

1( )f zy

1( ) constant

f zp

z z

Suppose that the pressure gradient is constant

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

21

21 2

1 10

2

1 ln

4

z z

z

v vp pr r r c

z r r r r z

pv r c r c

z

This type of flow is commonlycalled Hagen-Poiseuille flow, orsimply Poiseuille flow.

1

22

0finite at 0

B.C. 10 at

4

z

z

cv r

pc Rv r R

z

2 21 ( )

4z

pv r R

z

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The volume rate of flow, Q, passing through the tube and the pressure gradient.

2

0 0

42 2

0

1 2 ( )

4 8

R

z

R

Q v rdrd

p R pr R rdr

z z

or4

where 8

R p p pQ

l z l

Poiseuille's law relates pressure drop and flowrate for steady, laminar flow in circular tubes

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The mean velocity

4 22

8 8

R p R pR V Q V

l l

The maximum velocity, vmax occurs at r = 0

2 22 2

max

1(0 ) 2

4 4 4

p R p R pv R V

z z l

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

In dimensionless form2

2 2

max

1( ) 1

4z

z

vp rv r R

z v R

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

6.9.4 Steady, Axial, Laminar Flow in an Annulus

10 zvp

rz r r r

0 at B.C.

0 at z i

z o

v r r

v r r

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

21

21 2

1 10

2

1 ln

4

z z

z

v vp pr r r c

z r r r r z

pv r c r c

z

0 at B.C.

0 at z i

z o

v r r

v r r

2 22 21

ln4 ln( / )

i oz o

o i o

r rp rv r r

z r r r

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The volume rate of flow Q is2 2 2

2 4 4

0 0

2 2 24 4

( )

8 ln( / )

( ) where

8 ln( / )

Ro i

z o io i

o io i

o i

r rpQ v rdrd r r

z r r

r rp p pr r

l r r z l

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

The maximum velocity, vmax occurs at r = rm that

0 at zm

vr r

r

One can obtain

1/22 2

2ln( / )o i

mo i

r rr

r r

These results for flow through an annulus are valid only if the flow is laminar.

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

For tube cross sections other than simple circular tubes it is common practice to use an “effective” diameter, termed the hydraulic diameter, Dh, which is defined as

4 cross-sectional area

wetted perimeterhD

For circular tube with diameter D24 ( /4)

h

DD D

D

6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Flows

For an annulus2 24 cross-sectional area 4 ( )

2( )wetted perimeter 2 2

o ih o i

o i

r rD r r

r r

In terms of the hydraulic diameter, the Reynolds number is

Re hD V

mean velocity

Re < 2100, the flow will be laminar.

6.10 Other Aspects of Differential Analysis

( ) 0D

VDt

Continuity equation

Navier-Stokes equation

2DVp g V

Dt

Very few practical fluid flow problems can be solved using an exact analytical approach.

6.10 Other Aspects of Differential Analysis

6.10.1 Numerical Methods

2

( ) 0D

VDt

DVp g V

Dt

Thanks for your attention

top related