chapter 4 hilbert space. 4.1 inner product space

Post on 13-Dec-2015

299 Views

Category:

Documents

12 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chapter 4 Hilbert Space

4.1 Inner product space

Inner product

CEE :),(

0,0),()( xholdxxi

Exforlinearisxii ),()(

E : complex vector space

is called an inner product on E if

Eyxxyyxiii ,),(),()(

Inner product space

),(

xxx ,

E : complex vector space

is an inner product on E

With such inner product E is called

inner product space. If we write

,then is a norm on E and hence

E is a normed vector space.

Show in next some pages

Schwarz Inequality

Eyxyxyx ,,

E is an inner product space

yxyxTherefore

yxyx

havewebyThenyxyxayax

andathenyx

yxaTaking

CaEyxyaxyax

EyxyxyxHence

xy

yx

y

yxx

y

yx

y

yxx

havewey

yxtTaking

ytyxtxtyxtyx

Rtanyfor

andyxthenyxIfCase

yxyxthenyxIfCase

),(

),(

(*).),(),(),(

1,),(

),(

(*),,),(Re

,),(Re

),(Re

),(Re),(Re),(Re20

,),Re(

),Re(2),(0

0,0,0),(:2

),(,0),(:1

222

222

222

2

2

2

2

22

2

2

2

22

2

222

Triangular Inequality for ∥ .∥

Eyxyxyx ,

E is an inner product space

yxyx

yx

InequalitySchwarzbyyyxx

yyxx

yyxx

yyxx

yxyxyx

EyxanyFor

2

22

22

22

22

2

2

,2

,Re2

,Re2

,

,

Example 1 for Inner product space

nCE

nnn Cinzzzandzzz ,,,, 11

n

iiizzzz

1,

Let

For

Example 2 for Inner product space

221

2 ;,,)(Ni

izzzNE

)(,, 22121 Nzzzandzzz

Ni

iizzzz,

Let

For

Example 3 for Inner product space

),,(2 LE

),,(2 Lgandf

gdfgf ,

Let

For

Exercise 1.1 (i)

)(, 2 Nzz

summableiszzNjjj

zz ,

For Show that

and hence

is absolutely convergent

Njj

Njj

Njjj

jNj

j

Njjj

zz

zz

zz

zz

22

22

2

1

2

1

Exercise 1.1 (ii)

)(2 NShow that is complete

Nixz

sayCinsequenceconvergentaiszthen

CinsequenceCauchyaisz

Niforthen

Ninkmforzz

nkmforzz

nkmforzz

tsNnanyFor

zzz

zzz

withNinsequenceCauchyabezLet

inin

ni

ni

kimi

Nikimi

km

n

lim

,

,,

,

,

..,0

,,

,,

)(

22

22212

12111

2

.)(

)(lim

2

,,

max

2..

0

2

2

2

0

21

10

completeisNTherefore

NinxzHence

xzxz

nnforthen

xxxLet

nnTake

nnxztsNn

andNiFor

nn

Nii

Niinin

ii

iiinii

Hilbert space

),( E

.)(2 casespecialareCandN n

),,(2 L

An inner product space E is called

is complete Hilbert space if

is a Hilbert space of which

Exercise 1.2

Define real inner product space and

real Hilbert space.

4.2 Geometry for Hilbert space

Theorem 2.1 p.1

Ex

E: inner product space

M: complete convex subset of E

Let

then the following are equivalent

Theorem 2.1 p.2

zxyxsatisfiesMyMz

min

My

MzzyxysatisfiesMy 0),Re(

(1)

satisfing (1) and (2).

(2)

Furthermore there is a unique

0),Re(

,0

),Re(2

)0()(0

)0(),Re(2

)()(

)1()(

10

)2()1(

2

222

2

2

zyxy

havewelettingBy

zyzyyx

ff

fzyzyyxyx

zyyx

zyxflet

andMzanyFor

zxyxHence

zxyx

zxyxzxyxyx

xzyxyx

yxxzyx

yzyx

MzFor

Mz

min

),Re(

),Re(

),Re(

),Re(0

,

)1()2(

2

2

21

122211

122211

21212

21

21

0

,Re,Re

,,

,0

),2()1(

:

yythen

yyxyyyxy

yyxyyyxy

yyyyyy

thenandsatisfyyandyIf

yofUniqueness

nn

n

nm

nmnmnm

nmnmnm

nmnm

nmnm

n

nn

Mz

zxyxthen

nasyztsMycompleteisMSince

nmasnmnm

zz

xzz

zxzxzz

xzxzzxzxxzz

xzxzzxzx

zxxzzz

sequenceCauchyaiszClaimn

zxtsMzConsider

zxLet

yofExistence

lim

0..,

],011

241

21

2

2422

,Re22

4

,Re2

[

:

1..

.inf

:

2222

2222

222

22

22

222

Projection from E onto M

MEt :

Mt

The map

of Thm 1 is called the projection from E onto M.

y is the unique element in M which satisfies (1)

defined by tx=y, where

and is denoted by

Corollary 2.1

)()( 2 idempotentisttti

Mtt

)()( econtractivistyxtytxii

Let M be a closed convex subset of a Hilbert

has the following

properties:

space E, then

)(0),Re()( monotoneistyxtytxiii

0),Re((*),)(

),Re(

(*)),Re(

)),(Re(0

0),Re(

,0),Re()(

.)(

2

2

2

tytxtytxyxByiii

yxtytx

tytxyx

tytxyxtytx

tytxtytxyx

tytxtytxyx

txtyyty

tytxxtxii

obviousisi

Convex Cone

0, MxMx

A convex set M in a vector space is called

a convex cone if

Exercise 2.2 (i)

tIs

MxxyEyN 0),Re(;

NM tsandtt

Let M be a closed convex cone in a Hilbert

Put

Show that

space E and let

I being the identity map of E.

tIs

Xxtxxsx

txytxxtx

txyxtx

ytxxtx

ytxxxtxx

Mtxcetxy

Mcetxxtxtxxtx

NyandExanyFor

0),Re(),Re(

),Re(

),Re(

),Re(

sin,0),Re(

0sin,0)0,Re(),Re(

,

Exercise 2.2 (ii)

0)( iftxxt

( t is positive homogeneous)

txxtthen

Mzce

ztxxtx

ztxxtxztxxtx

thenIfCase

Mcexttxt

thenIfCase

MzandXxanyFor

)(

1sin,0

)1

,Re(

),Re(),Re(

,0:2

0sin),(0)0()(

,0:1

,

Exercise 2.2 (iii)

Exsxtxx ,222

222

22

22

22

),Re(2

,

]0),Re(

0)0,Re(

sin,),Re(

sin,),Re(0[

0),Re(:

,

txsxx

txsx

txsxtxsx

txsxxtxsxx

tsItIsSince

sxtxthen

txxtx

tIscetxxtx

NsxandMtxcesxtx

sxtxClaim

ExanyFor

Exercise 2.2 (iv)

0; txExN

0; sxExM

0;

0

)2(

0;

0

)1(

sxExMHence

sx

txsxtx

xtxMx

txExNHence

tx

txsxsx

xsxNx

Exercise 2.2 (v)

sxztxy ,

;0),Re( sxtxxandsxtx

,0),Re(,, zyandNzMyzyx

then

conversely if

sxzSimilarly

txythen

zw

zwywyzwyxy

Mwanyforthen

zyandNzMyzyxifConversly

sxtx

sxtxsxtxsxtxsxtx

sxtxxandsxtxxSince

sxtxxtxxsx

ExanyfortIsSince

,

0),Re(

),Re(),Re(),Re(

,

0),Re(,,,,

0),Re(

),Re(2

,

22222

222

Exercise 2.2 (vi)

MxxyEyMN 0),(::

M is a closed vector subspace of E. Show that

In the remaining exercise, suppose that

Mz

Myyzhence

Myyz

yz

My

yz

yz

yz

yz

subspacevectorclosedaisMce

My

iyz

iyz

yz

yz

MyyzNz

obviousisIt

0),(

0),Im(

0),Re(

0),Im(

0),Im(

0),Re(

0),Re(

sin

,

0),Re(

0),Re(

0),Re(

0),Re(

0),Re(""

.""

Exercise 2.2 (vii)

both t and s are continuous and linear

.

,

.

)(

)(

)()(

)()(

,,

222

22112211

22112211

22112211

221122112211

222111

2121

continuousaresandtthen

xsxandxtxsxtxxSince

lineararesandt

sxxsxxs

andtxxtxxt

NsxxsandMtxxtwhere

sxxstxxtxx

sxtxxandsxtxx

CandExxanyFor

Exercise 2.2 (viii)

tsENstEM ker;ker

tsENhaveweSimilarly

KersysyMy

sMthatshowTo

MytEy

tEyytyMy

tEMthatshowTo

ker,

0

ker)2(

""

"''

)1(

Exercise 2.2 (ix)

Eyxtyxytx ,),(),(

),(),(

),(),(),(

),(),(),(

tyxytx

tytxtysxtxtyx

tytxsytytxytx

Exercise 2.2 (x)

MzandMy

such that x=y+z

tx and sx are the unique elements

zsxSimilarly

ytx

tNMzcetytx

linearistcetztytx

MzandMywherezyx

,

kersin,

sin,

,

4.3 Linear transformation

We consider a linear transformation from

vector space Y over the same field R or C.

a normed vector space X into a normed

Exercise 1.1

T is continuous on X if and only if

T is continuous at one point.

.

)(

,

)(

..0,0

.""

.""

0

00

0

XoncontinuosisTHence

TsTx

sxTsx

Xsanyforhence

xxT

TxTxxx

tsanyforthen

xatcontinuousisTthatAssume

obviousisIt

Theorem 3.1

XxxcTx

0c

T is continuous if and only if there is a

such that

XxxcTx

thencchoosewe

xTx

xx

Txx

XxanyFor

Txxts

xatcontinuousisT

continuousisT

XoncontinuousisTExerciseBy

xatcontinuousisTthatobviousisIt

,1

1

1

0

1..0

0

""

.,1.3

.0""

Theorem 3.3Riesz Representation Theorem

Xy 0

X

Xxxyx ,)( 0

Let X be a Hilbert space and

Furthermore the map

such that then there is

0y

is conjugate linear and 0y

)(),(

,)(

)()(),)(

(

),(),(

)()()(

.

,

,

.dim,ker

0

0

020

00

0020

0

20000

00

0

0

xxy

havewethenxx

xyletweifHence

xxxxx

x

xxvxxx

xxvx

scalaraand

MinelementnonzerofixedaisxMvwhere

xvxwritecanweXxanyFor

ensionaloneisMthenMLet

thatassumemayWe

4.4 Lebesgue Nikondym Theorem

Indefinite integral of f

fd

,,

AfdAA

)(

Let

Suppose that

and f a Σ –measurable function on Ω

be a measurable space

has a meaning;

then the set function defined by

is called

the indefinite integral of f.

Property of Indefinite integral of f

nA0)(

0)(0)( AwheneverA

ν is σ- additive i.e. if

nn

nn AA )(

is a disjoint sequence, then

Absolute Continuous

,,,,, spacesmeasurebeandLet

0)(0)( AwheneverA

ν is said to be absolute continuous

w.r.t μ if

Theorem 4.1Lebesgue Nikodym Theorem

and

spacesmeasurebeandLet ,,,,

AhdAA

,)(

with

),,(1 Lh

Suppose that νis absolute continuous w.r.t.

μ, then there is a unque

such that

Furthermore ..0 eah

)1.4()1(

)(

..

Re,

)(

1)(

,)(

),,(

,

)(2

1

212

12

2

2

Xffgddgf

fgdfgdfgdfdf

tsXg

ThmonpresentatiRieszbyX

f

ddfdffSince

Xffdfbydefined

Xonfunctionallineartheconsiderand

LXspaceHilbertrealtheConsider

Let

L

0)(

0)(

0)(

0)()1(0

),1.4(

0)(0)(0)(

)1()(0

),1.4(

1)(;0)(;[

..1)(0:1

2

2

2

2

111

1

21

22

2

11

1

A

A

A

Adgdg

haveweinfTake

AAA

dgdgA

haveweinfTake

xgxAandxgxALet

onxeaxgClaim

AA

A

AA

A

]lim)1(lim)1(

)1.4(

0)1()1(0

.,.001

,2,1

[

..

)1.4(:2

fgdgdfdgfdgf

andThmeConvergencMonotonefromthen

fggfandgfgf

eagandgSince

nnfflet

andfunctionasuchbefLet

functionsenonnegativea

andfunctionmeasurableallforholdClaim

nn

nn

nn

n

.

),,(

,)(

)(

),1.4(,

..0,1

1

),1.4(1

,..

1

obviousisuniqueishsuchThat

Lhhence

hdknowweSince

hdhddA

theninztakeweAanyFor

hdzdz

andeahtheng

ghLet

dg

gzdz

thening

zfChoose

zfunctionenonnegativeaandmeasurableaFor

AAA

A

4.5 Lax-Milgram Theorem

Sesquilinear p.1

),(),(),( 22112211 xxBxxBxxxB

CXxxxfor 2121 ,,,,

CXXB :),(

Let X be a complex Hilbert space.

),(),(),( 22112211 xxBxxBxxxB

is called sesquilinear if

Sesquilinear p.2

EyxyxryxB ,),(

B is called bounded if there is r>0 such that

XxxxxB 2),(

B is called positive definite if there is ρ>0 s.t.

Theorem 5.1The Lax-Milgram Theorem p.1

1S

XyxySxByx ,),(),(

Let X be a complex Hilbert space and B a

a bounded, positive definite sesquilinear

functional on X x X , then there is a unique

bounded linear operator S:X →X such that

and

Theorem 5.1 The Lax-Milgram Theorem p.2

1S

rS 1

Furthermore

exists and is bounded with

1

1

2

*

*2

*1

*2

*1

2*2

*1

*2

*1

*2

*1

*2

*1

*2

*1

*

**

,,

,

,

0

),(0

0),(

),(),(

mindet)0(

),(),(..;

S

xSx

SxxSxxSxSxBSx

DonlinearisS

andsubspacelinearisDarsesquilineisBSince

xSxletDxFor

xxxx

xxxxxxB

XyyxxB

XyyxByxB

atederuniquelyisxandDDthen

XyyxByxtsXxXxDLet

*

*

*

**

*

),(),(lim),(lim,

0

),(),(),(

)(

.[

:

xSxandDxthen

yxBySxByxyxHence

nasyxSxr

yxSxByxBySxB

xSxthen

XinCauchyisSxboundedisS

xxSxxSSxSx

XxxandDxLet

closedisDthatshowtoFirst

XDClaim

nn

nn

n

nn

n

n

mnmnmn

nn

ioncontradictay

yyyByx

Dx

XxxyBxxxtsXx

ThmonpresentatiRieszBy

X

XxxyBx

bydefinedbeletandDyLet

DthenXDthatSuppose

,0

),(,0

),()(,..

,Re

),()(

0,

0

200000

0

000

0

0

rSxrxS

xSxr

xSxBxSxSSBxSxSxS

andexistSHence

XxxyBxx

tsXxbeforeasXy

ontoisSthatshowTo

xxBxx

thenSxIf

isSthatshowTo

11

1

1111121

1

00

00

,,,

),(),(

..

00),0(),(

,0

11

4.7 Bessel Inequality and parseval Relation

Propositions p.1

kEk tt

ne

neLet

Ut

be an orthogonal system in a

Hilbert space X, and let U be the closed vector

subspace generated by

Let be the orthogonal projection onto U

and where kk eeE ,,1

Proposition (1)

Xxexextk

jjjk

1),(

k

jjjk

ikikkii

i

k

jjjiki

k

jjjk

exextHence

xtextxtexeBut

eexte

kiFor

thenextLet

1

1

1

,

),(1,,

),(),(

,,1

,

Proposition (2)

xtxtXxFor Ukk

lim,

kUkUk

k

UUkk

U

kk

kk

kkk

k

N

iii

tttcextxt

xtxtt

UxtExanyFor

Uyifyytthen

yzzy

yzztyt

yzztytyyt

zztNk

zytsezncombinatiolinearaisthere

andUyanyFor

sin,lim

lim

,

lim

2

..

,0

1

Proposition (3)

).,(),(),(1

yexeytxt j

k

jjkk

For each k and x,y in X

),(),(

),(,),(

),(,),(),(

1

11

11

xexe

exeexe

exeexeytxt

j

k

jj

k

iiij

k

jj

k

iii

k

jjjkk

Proposition (4)

).,(),(),(1

yexeytxt jj

jUU

For any x,y in X

),(),(

),(),(lim

),(lim),(

0

),(),(

),(),(

),(),(),(

),(),(

),(),(

1

1

yexe

yexe

ytxtytxtthen

kasytytxyxtxt

ytytxtytxtxt

ytytxtytxtxt

ytxtytxtytxtxt

ytxtytxtxtxt

ytxtytxt

ii

i

i

k

ii

k

kkk

UU

kUkU

kUkUkU

kUkUkU

kkUkUkU

kkUkkU

kkUU

Proposition (5)

Xxxxei

i

,),(

2

1

2

Bessel inequality

22

1

2),( xxtxe U

jj

Proposition (6)

XUXxxxei

i

,),(

2

1

2

An orthonormal system ne

is called complete if U=X

( Parseval relation)

XUHence

oncontraditiaxext

xtxtx

xxttsXx

thenXUthatSuppose

xxtxe

thenXUIf

iiU

UU

U

Ui

i

,),(

)1(

..

,""

),(

,""

1

2

222

22

1

2

Separable

A Hilbert space is called separable

if it contains a countable dense subset

Theorem 7.1

2

A saparable Hilbert space is isometrically

nCisomorphic either to for some n

or to

.inf.inf

.,

,

.

.

1

initeisxthatassumeweHenceiniteis

xwhencasetheofthatofimitationeasyanis

xofycardinalittheisnwhereCtoisometric

llyisometricaisXthatproofthefiniteisxIf

xzthatsuchxesubsequenc

tindependenanzfromextractcanOne

Xindenseiswhich

elementsofsequenceabezLet

spaceHilbertseparableabeXLet

k

k

kn

k

kkk

k

kk

..

,),6(),(

),(

:

,)1.7(),(),(),(

)4(,

;,,

,

2

1

22

12

1

1

obviousislinearisThatisometryisso

xxbyxexSince

xewhere

xlettingbyXmaptheDefine

tIbecauseyexeyx

fromhaveweXinyxforthus

XUtheneUletbeforeAs

exthatsuche

systemorthonomalanxfromconstructcanwe

procedurelizationorthonormaSchmidtGramFrom

jj

kk

kk

Uj

jj

k

kkkk

k

)1.7(

.

,lim,

,lim.

0

.

int,

.

2

11

1

22

1

21

2

fromfollowsisomophismanisThat

ontoisTherefore

xhenceandeexethen

xxLetsequenceCauchyaisxHence

mastotendswhich

xxhavewemnFor

sequenceCauchyaisxthatclaimwe

exlet

negerpositiveeachforLet

ontoisthatnowshowWe

kki

n

jjji

ni

nn

n

n

mjjmn

n

n

jjjn

kk

top related