canary - royal observatory, edinburgh€¦ · canary phases • 2010 – phase a – 3 ngs in 2.5...

Post on 22-Aug-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

CANARY 

Tomography workshop 

Edinburgh, 25‐26 march 2014 

CANARY 

•  CANARY is a technical demonstrator for MOAO 

•  Installed on the William Herschel Telescope (La Palma, Canaries) 

•  Born in 2007 as a « fast track project » for the need of the phase‐A of EAGLE, a MOS proposal on the EELT 

•  Works on quadruplets (= 3+1) of stars 

–  3 off‐axis stars for tomography 

–  1 central star for making an image and diagnos\c purposes 

–  4 lasers guide stars 

•  First success in Sept. 2010 : MOAO demonstrated on‐sky 

•  Recent sucessful a`empts for astrophysics (merging galaxy cores) 

CANARY phases 

•  2010 – PHASE A 

–  3 NGS in 2.5 arcmin diameter 

–  tomography + open loop 

 

•  2012 – PHASE B1 

–  PHASE A config + 

–  1 Rayleigh LGS on‐axis in open‐loop 

 

•  2013 – PHASE B2 

–  PHASE A  + 

–  4 LGS Rayleigh on a square, 23’’ off‐axis, 

      at 21 km al\tude 

•  2014 – PHASE C1 : LTAO 

•  2015 – PHASE C2 : 2‐stage MOAO 

Jupiter #53 

Acq. cam 

d=49’

’ 

8.3 < magnitudes R < 11.2 

25’’ < Dist. from center < 65’’ 

2.5’ field of view 

Observed asterisms 

CANARY TOMOGRAPHY 

CANARY MOAO control algorithm 

•  Learn and Apply : op\mal sta\c approach (MMSE) 

–  get data from turbulence 

–  learn, from the wavefront sensors data, what are the best parameters for the 

tomographic reconstructor 

–  introduce turbulence knowledge + a priori (kolmo, devia\ons) 

–  introduce calibrated system command matrix (truth  DM) 

–  get the final sta\c reconstructor 

–  Vidal et al., « A tomography approach for MOAO », JOSA A, 27, 253 

•  Temporal op\miza\on : op\mal temporal filtering 

–  op\mize the gain of an integra\ng filter versus 

•  turbulence speed 

•  noise propagated amer tomographic reconstruc\on 

MMSE tomographic reconstructor 

•  MMSE = minimum mean‐square error 

–  between       R . measur 

–  and      phase 

–  on average 

•  Minimizes    〈 |phase – R . measur|2 〉 

•  Expression is     R  =  〈 phase . measurt 〉 . 〈 measur . measurt 〉‐1 

 

contains all informa\on 

about what measurements 

are made of 

‐  noise 

‐  geometry 

‐  turbulence profile 

‐  LGS, NGS ... 

contains all informa\on 

about how measurements 

are related to phase 

Today’s method (Learn & Apply) 

•  Determina\on of covariance model 

–  Based on the WFS data acquired by the instrument itself 

mixed WFS data 

L G S + 

N G S + 

T T 

Experimental 

covar. matrix 

Theore\cal 

covar. matrix 

Model 

fipng 

proc. 

MMSE 

tomo reconst 

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10+4

Cn2(h) profile, r0 

outer scale L0 

others (LQG,..) 

measured WFS centroid gain,  

telescope tracking  

INPUTS  OUTPUTS 

Instrument 

calibra\ons : 

pupil shims 

pupil magnif. 

star separatn 

instrum. calibra\ons may  

either be inputs or outputs 

of the Learn process 

CANARY ON‐SKY RESULTS 

green: GLAO4L3N

red: MOAO4L3N

black: SCAO

script292

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

Average profileduring the scriptProfile identified on−sky

Script script292

−100 −50 0 50 100

0

5

10

15

20

25

30

Relative Strength (%)

Altitude (

km

)

Relative Strength (%)

Altitude (

km

)

MOAO vs 

GLAO 

•  Using full info 3N + 4L 

•  ast. A53, 17/9/13 

2h30, script 292 

r0=16.1cm, v=3.3 m/s 

r0=26.3cm, v=7.7 m/s 

L0= 6 m 

Total

BWFit

Tomo

OL

Noise

Alias Static

NCPA

Black:SCAO

Red:MOAO4L3N

Green:GLAO4L3N

0 2 4 6 8 10 0

100

200

300

400

500

Wav

efr

on

t err

or

(nm

rm

s)

140 nm 

108 nm 

191 nm 

LGS≈190 nm 

SCAO 

MOAO 4L3N 

GLAO 4L3N 

Average profileduring the scriptProfile identified on−sky

Script script274

−100 −50 0 50 100

0

5

10

15

20

25

30

Relative Strength (%)

Altitude (

km

)

Relative Strength (%)

Altitude (

km

)

green: GLAO4L3N

red: MOAO4L3N

black: SCAO

script274

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

MOAO vs 

GLAO 

•  Using full info 3N + 4L 

•  ast. A47, 17/9/13 

21h56, script 274 

r0=15.3cm, v=2.9 m/s 

r0=25.4cm, v=5.6 m/s 

L0= 8.5 m 

Total

BWFit

Tomo

OL

Noise

Alias

Static

NCPA

Black:SCAO

Red:MOAO4L3N

Green:GLAO4L3N

0 2 4 6 8 10 0

100

200

300

400

Wav

efr

on

t err

or

(nm

rm

s)

90 nm 

56 nm 

100 nm 

LGS≈220 nm 

SCAO 

MOAO 4L3N 

GLAO 4L3N 

red: MOAO4L3N

magenta: MOAO4L3T

black: SCAO

script291

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

Average profileduring the scriptProfile identified on−sky

Script script291

−100 −50 0 50 100

0

5

10

15

20

25

30

Relative Strength (%)

Altitude (

km

)

Relative Strength (%)

Altitude (

km

)

4L3T vs 

4L3N 

•  Using full info 3N + 4L 

•  ast. A53, 17/9/13 2h15, 

script 291 

r0=16.7cm, v=3.3 m/s 

r0=22.4cm, v=7.8 m/s 

L0= 7 m 

Total

BWFit

Tomo

OL

Noise

AliasStatic

NCPA

Black:SCAO

Red:MOAO4L3T

Blue:MOAO4L3N

0 2 4 6 8 10 0

100

200

300

400

Wav

efr

on

t err

or

(nm

rm

s)

100 nm 

64 nm 

140 nm 

LGS≈200 nm 

SCAO 

MOAO 4L+ 3N 

MOAO 4L + NGS=TT 104 nm 

Average profileduring the scriptProfile identified on−sky

Script script293

−100 −50 0 50 100

0

5

10

15

20

25

30

Relative Strength (%)

Altitude (

km

)

Relative Strength (%)

Altitude (

km

)

blue: MOAO3N

red: MOAO4L3N

black: SCAO

script293

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

3N vs 

4L3N 

•  Using full info 3N + 4L 

•  ast. A53, 17/9/13 2h39, 

script 293 

Total

BW Fit

Tomo

OL

Noise

Alias

Static

NCPA

Black:SCAO

Red:MOAO4L3N

Blue:MOAO3N

0 2 4 6 8 10 0

100

200

300

400

Wav

efr

on

t err

or

(nm

rm

s)

92 nm 

59 nm 

132 nm 

LGS≈180 nm 

SCAO 

MOAO 4L+ 3N 

MOAO 3N 93 nm 

r0=18.8cm, v=2.6 m/s 

r0=30.2 cm, v=6.1 m/s 

L0= 6 m 

Average profileduring the scriptProfile identified on−sky

Script script275

−100 −50 0 50 100

0

5

10

15

20

25

30

Relative Strength (%)

Altitude (

km

)

Relative Strength (%)

Altitude (

km

)

blue: MOAO3N

red: MOAO4L3N

black: SCAO

script275

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

3N vs 

4L3N 

•  Using full info 3N + 4L 

•  ast. A47, 17/9/13 22h03, 

script 275 

r0=16.3cm, v=2.6 m/s 

r0=27.2cm, v=5.5 m/s 

L0= 11 m 

Total

BWFit

Tomo

OL

Noise

Alias

Static

NCPA

Black:SCAO

Red:MOAO4L3N

Blue:MOAO3N

0 2 4 6 8 10 0

100

200

300

Wav

efr

on

t err

or

(nm

rm

s)

97 nm 55 nm 

125 nm 

LGS≈230 nm 

SCAO 

MOAO 4L+ 3N 

MOAO 3N 

86 nm 

The « Pluto mode » 

•  Originally intended to observe Pluto (that has, actually, never been 

observed) 

•  4 LGS in open loop + 1 TT star (=pluto) in closed loop on truth sensor 

•  Allows to test tomography purely on LGS 

•  Comparison between MOAO and GLAO 

only \p‐\lt 

is sensed on this 

star 

blue: MOAO3N

red: MOAO4L3N

black: SCAO

script275

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

green: GLAO4L3N

red: MOAO4L3N

black: SCAO

script274

1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

# Acquisition

Mea

sure

d S

treh

l in

H b

and

Tomography with 4L 

•  With, and without lasers 

•  ast. A47, 17/9/13 22h03,  

•  script 274, 275 + pluto mode 

•  Lasers are actually doing tomography 

SR IR cam (H) 

script 275 

3N vs 4L3N script 274 

GLAO vs MOAO 

SCAO 

MOAO 4L 

GLAO 4L 

MOAO 4L3N 

MOAO 3N 

SCAO SCAO 

MOAO 4L3N 

MOAO 4L3N 

Overview of results on A47, Sept 2013 

Ground Wind speed < 5 m/s

0.6 0.8 1.0 1.2 1.40.0

0.1

0.2

0.3

0.4

0.5

Seeing (arcsec)

Mea

sure

d S

treh

lM

easu

red S

R (

H b

and)

seeing (‘’)

•  MOAO performs well 

•  most of the \me 

between GLAO and 

SCAO 

•  Bad seeings : ground 

layer dominates 

–  GLAO ≈ MOAO 

•  Performance fluctuates 

quite a lot 

CANARY : astrophysical result 

NGC 6240 

Galaxies in interac\on 

 

1 guide star 

38’’ off‐axis 

mR ≈ 13 

HST image 

NGC6240 

 

Détails 

Résolu\on ≈ 2x0.090’’ 

 

Pb = sta\c aberra\ons 

 

Total observa\on \me ≈ 2.5 h 

TOMOGRAPHIC ERROR 

Ver\cal error distribu\on 

•  Common wrong ideas : 

–  MMSE tomographic reconstructor designed for 2 layers compensa\on will perfectly compensate the 2 layers 

–  MMSE tomographic reconstructor will perfectly compensate the ground layer 

anyway (because it’s easy ?) 

–  If all WFS see the same pa`ern  ground layer only  perfect compensa\on 

 

•  Error superimposi\on principle 

Reconst meas1  error1 

Reconst meas2  error2 

Reconst 

a.meas1 + 

b.meas2 

a.error1 + 

b. error2 

Reconst 

a.meas1(t) + 

b.meas2(t) 

a2 σ21 + 

b2 σ22 

for independent processes 1 and 2 

Ver\cal error distribu\on 

•  Summing profiles is allowed (encouraged ?) : 

Reconst  σ21 

0 20 40 60

0.0

0.5

1.0

1.5

10+4

0 100 200 300 400 500

0.0

0.5

1.0

1.5

10+4

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

10+4

Reconst  σ22 

Reconst  σ21 + σ22 

profile 1 

profile 2 

both 

•  Summing layers of unitary strengh strengh (Cn2=1, r0=D, seeing=1’’...)  

0 5 10 15 20

0.0

0.5

1.0

1.5

10+4

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

10+4

ε2(h) Reconst 

Ver\cal error distribu\on (VED) 

Reconst  Cn

2

h

! (h) !2(h)

Valid for any kind of 

tomo reconstructor, 

not only MMSE ! 

ver\cal error distribu\on: 

ε2(h) is associated to a given reconstructor 

 

r0!5/3

h

" (h) !2(h)note :  can be more convenient 

Building the VED 

•  Simulate covariance matrices of single layers, at each al\tude 

–  every ≈ 500 m ? 

•  with unitary Cn2(h) 

•  derive the error on each  

〈err.errt〉 = 〈phase. phaset〉 – 〈phase. meast〉.Rt   

             – R.〈phase. meast〉t + R.〈meas.meast〉.Rt 

•  ε²(h) allows to  

–  compute the tomographic error  

–  an\cipate the impact of unexpected layers 

–  assess the impact of al\tude change 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0 20 40 60

0.0

0.5

1.0

1.5

10+4

GLAO 

MOAO 

VED example 

•  Same example, cont’d : 

–  SCAO case : R=1 Iden\ty matrix (grows like H5/3) 

–  error on the 3 layers increase w 

al\tude, although declared w 

same strengh 

–  GLAO beats MOAO for 

0<H<2500m 

–  error at ground layer is not 0 for 

MOAO (beware of sta\c 

aberra\ons..) 

–  « notch » holes : width is in 

(Øsubap/α)=2500m here 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0 20 40 60

0.0

0.5

1.0

1.5

10+4

GLAO 

MOAO 

SCAO 

VED example 

•  Varying the star separa\on : 

–  Zoom on an asterism 

–  « notch » holes : width is in 

(Øsubap/α) 

–  (Øsubap/33’’)=3500m here 

–  « notch » holes are present un\l 

pupils do not overlap enough (or 

any more ..) 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

altitude (m)

ε2(h

)

altitude (m)

ε2(h

)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0 20 40 60

0.0

0.5

1.0

1.5

10+4

33’’ 

66’’ 

140’’ 

VED example 

•  Splipng 1 single layer in 2 

–  Separated by 1500 m 

–  makes ≈ no difference 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

altitude (m)

ε2(h

)

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

0 20 40 60

0.0

0.5

1.0

1.5

10+4

VED on an EELT ? 

•  Telescope diameter kept 

constant 

 

•  Increasing the number of 

subapertures creates sharper 

« notch holes » in the VED  

sensi\vity/resolu\on in al\tude 

is higher 

 

•  An increased resolu\on of the 

profile is required 

7x7 

10x10 

15x15 

30x30 

Lengh of red dash  

propro\onnal to Øssp / α 

Impact of mul\ple thin layers  

•  Example on a CANARY profile 

•  No\ce how introducing small layers allow to reduce the error 

 

•  Can extra « fake » layers be inserted « in case they pop‐up » ? 

GLAO 

MOAO 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

Impact of mul\ple thin layers  

•  Example on a CANARY profile 

•  No\ce how introducing small layers allow to reduce the error 

•  Can extra « fake » layers be inserted « in case they pop‐up » ? 

–  yes, but ... 

–  you then pay most of the price on the ground layer 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

0 200 400 600 800 1000 1200

0.0

0.5

1.0

1.5

2.0

2.5

10−4

altitude (m)

ε2(h

)

Impact of ground layer strengh 

•  Same example on the same CANARY profile 

•  3 MMSE reconstructors 

–  different Ground Layer strengh 

•  Safe tomography : protect yourself, consider doubling the layer. 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

0 500 1000 1500 2000

0.

1.

2.

3.

4.

5.

6.

10−4

altitude (m)

ε2(h

)

Scidar data analysis 

•  Scidar 

–  Operated by James Osborn on JKT 1 m telescope 

–  many data, all night long 

•  Match pre`y well with CANARY data 

•  Ground layer / low layers need 

adjustment 

•  Many « weak » layers appear/disappear 

all the \me 

•  However they’re not crucial to op\mize 

the reconstructor 

−2 0 2 4 60.0

0.5

1.0

1.5

2.0

10+4

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

2.0

10−13

22h21 

VED of a raw reconstructor 

•  Raw reconstructor is :  

   Rraw =   〈 measurTS. measurt 〉 . 〈 measur . measurt 〉‐1   

•  Built with NO knowledge on the profile at all 

•  Offset wrt « learned MMSE »  –  temporal convergence ? (hyper‐adapted to the learning sequence) 

–  lack of robustness 

•  Naturally immunized against 10km layers 

0.0 0.5 1.0 1.5 2.0

10+4

0.0

0.5

1.0

1.5

10−3

altitude (m)

ε2(h

)

0

50

0

50

computed on 10000 frames (≈1 mn) 

Conclusion 

•  Tomography demonstrated by CANARY 

•  More important : simula\ons validated 

–  provided an average ≈100 nm model error is added 

•  Science demonstra\on also done 

–  although CANARY is not suited for that 

•  VED : new tools can help understand tomography for EELT ... 

top related