c vaibhav palkar, chandan k. choudhury, olga kuksenok §· r

Post on 08-Nov-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Results

Acknowledgements

Development of a Dissipative Particle Dynamics framework for simulating tetra-PEG gels with

degradable crosslinksVaibhav Palkar, Chandan K. Choudhury, Olga Kuksenok

Department of Materials Science and Engineering, Clemson University

Motivation

Directed growth of neural networks using degradable gels McKinnon, D. D. et al. (2014) Biomacro. 15(7), 2808

Truong, V. X., et. al. (2017). ACS Appl. Mat. &

Inter., 9(38), 32441

Selective cell release

Biomedical applications of

controllably degradable

tetra-PEG gels

Goal: Develop a coarse-grained numerical framework for simulating

degradation in gels

Modeling Gels using DPD

Starting structure for simulations

Precursor A Precursor B

DPD

LJ0

rij

F

Bond Breaking with Segment Repulsion

Sirk, T. W., et. al. (2012). J. Chem. Phys., 136(13)

Modified segmental

repulsive potential (mSRP)

Degradable

fix bond/break

Finite

Stochastic model

Suppress bond crossing – apply segment repulsion

Method – Updated Implementation

LAMMPS

Atom Neighbor Modify

Fix

Update

bond_atomper atom array

of bond partners

bondlistper bond array

of bonded atoms

fix bond/breakpost_integrate()break bondsupdate bond_atom

Loop over N timestepsfix->initial_integrate();fix->post_integrate();

nflag=neighbor->decide();if nflag:fix->pre_neighbor();neighbor->build();fix->post_neighbor();

end if

fix->pre_force();force->compute();fix->post_force();

fix->final_integrate();

fix srppost_neighbor()if bond broken then

update srp particles from

bondlist

build()rebuild bondlistfrom bond_atom

This work was supported in part by the National Science Foundation EPSCoR

Program under NSF Award # OIA-1655740.

Clemson University is acknowledged for generous allotment of compute time on

Palmetto cluster.

✓ Initial framework for simulating

degradable gels

✓ Control over degradation rate

• “Reverse gelation” vs. surface

erosion

• Introduce reversible bonds

Conclusions and Future work

pair srp

– compute forces

fix srp

– create initial srp particles

Verletintegration

scheme

Verlet pseudocode

1

32

0

0 0

1 02

ln c

Dimensionless crosslink density

Fitting parameters: χ=0.45, ϕ0=0.4

Swelling without degradation Chain length distribution in swollen gels

Water hidden

Nx r

10 1.30

20 1.37

30 1.40

48 1.48

44

22 2

0

0

2

( ) 51.67

3( )

R P R dRRr

RR P R dR

r : Gaussian character

Validation

p : bond breaking probability

τR: breaking event interval

k = p/τR breaking rate

Kremer, K., & Grest, G. S. (1990). J. Chem. Phys., 92(8), 5057

Transition from affine to phantom network

models agrees with experiments

Akagi, Y. et. al (2013)

Macromolecules, 46(3), 1035

Degradation rate control

Fragment size evolution analysis: fragment size – # of beads

Mesoscale model: DPD

• Multiple atoms → DPD beads

• Soft potential → large time steps

• Conserves momentum

ˆ1ijC

ij ij ij

c

r

ra

F e

𝑎𝑖𝑖 = 78 𝑘𝐵𝑇/𝑟𝑐

Largest fragment size decreases over time “Reverse gelation” peak

Lines: Fit with Flory-Rehner theory

𝑎𝑝𝑤 = 80 𝑘𝐵𝑇/𝑟𝑐

Overlap with analytical:𝑁

𝑁0= exp(−𝑘𝑡)

𝑎𝑝𝑤 = 83 𝑘𝐵𝑇/𝑟𝑐

Red bond breaks

Current LAMMPS implementation

Our extension

When bond is broken,

delete corresponding

SRP particle

𝐅𝑖𝑗𝑚𝑆𝑅𝑃

(mSRP)

top related