bmayer@chabotcollege.edu mth15_lec-10_sec_2-5_incrementals_.pptx 1 bruce mayer, pe chabot college...

Post on 12-Jan-2016

218 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics§2.5

Incrementals&

Marginal Analysis

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx2

Bruce Mayer, PE Chabot College Mathematics

Review §

Any QUESTIONS About• §2.4 → Derivative Chain Rule

Any QUESTIONS About HomeWork• §2.4 → HW-10

2.4

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx3

Bruce Mayer, PE Chabot College Mathematics

§2.5 Learning Goals

Study marginal analysis in economics Approximate derivatives using

increments and the differential

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx4

Bruce Mayer, PE Chabot College Mathematics

Example RoC for Productivity

The productivity model (in Items per day) for a complex Engineered product:

• where w is the number of worker-days dedicated to making the products

For this Situation:a) Compute & interpret P(w+1) − P(w)

b) Compute & Compare:P(6) − P(5)[dP/dw]w=5

wwwP 303 2

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx5

Bruce Mayer, PE Chabot College Mathematics

Example RoC for Productivity

SOLUTION (a)

This expression is the difference between productivity at w+1 worker-days and at w worker-days.

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx6

Bruce Mayer, PE Chabot College Mathematics

Example RoC for Productivity

SOLUTION (b)

Recall from the §2.4 Lecture-slides that [dP/dw]w=5 which is approximately equal to the actual change in productivity when moving from 5 to 6 worker-days (calculated above).

97.1 Items/day for 1 added WorkerDay

1597.16

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx7

Bruce Mayer, PE Chabot College Mathematics

Working on The Margin

Is it worth it? A thing worth doing may NOT be

worth doing well. Know when it’s time to move on! Look forward, not back! When is enough enough?

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx8

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis

Marginal analysis is used to assist people in allocating their scarce resources to maximize the benefit of the output produced• That is, to Simply obtain the most value for

the resources used.

What is “Marginal”• Marginal means additional, extra, or

incremental (usually ONE added “Unit”)• Every choice has cost and benefit

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx9

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis

A technique widely used in business decision-making and ties together much of economic thought

Specifically, in any situation, people want to maximize net benefits:

NETbenefits=TOTALbenefits−TOTALcosts

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx10

Bruce Mayer, PE Chabot College Mathematics

The Control Variable

To do marginal analysis, we can change a variable, such as the:• quantity of a good you buy, • the quantity of output you produce, or• the quantity of an input you use.

This variable is called the independent, or, CONTROL variable• Marginal analysis focuses upon whether

the control variable should be increased by one more unit or NOT

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx11

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis GamePlan

1. Identify the control variable (cv).

2. Determine what the increase in total benefits would be if ONE more unit of the control variable were added.

This is theMarginal BENEFIT

of theSINGLE added unit

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx12

Bruce Mayer, PE Chabot College Mathematics

Marginal Analysis GamePlan

3. Determine what the increase in total cost would be if one more unit of the control variable were added

This is the Marginal COSTof the SINGLE added unit

4. If the unit's marginal benefit exceeds (or equals) its marginal cost, it SHOULD BE ADDED.

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx13

Bruce Mayer, PE Chabot College Mathematics

∆C

vs dC

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • C vs dc

XYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.m

C

dC

0x 10 x x0

y

xCy

Tangent Line (slope)

11 00 xxx

11 00 xxdx

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx14

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 07Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = 0; xmax = 0.3; ymin =0; ymax = 1.4;% The FUNCTIONx = linspace(xmin,xmax,1000); y1 = x.*(12-10*x-100*x.^2); y2 = -4*(x-.2) +1.2% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y1, 'LineWidth', 5),axis([.15 .3 .6 1.4]),... grid, xlabel('\fontsize{14}p ($k/Ph)'), ylabel('\fontsize{14}R ($M)'),... title(['\fontsize{16}MTH15 • \DeltaC vs dc',]),... annotation('textbox',[.15 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraph6x6BlueGreenBkGndTemplate1306.m','FontSize',7)hold onplot(x,y2, '-- m', 0.2,1.2, 'd r', 'MarkerSize', 6,'MarkerFaceColor', 'r', 'LineWidth', 2)plot([0.2,.2], [0.8,1.2], 'k', [0.2,.25], [.8,.8], 'k', [0.2,.25], [1.2,1.2], '-.k', [0.25,.25], [1,1.2], '-.k', 'LineWidth', 3)set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.2:ymax])hold off

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx15

Bruce Mayer, PE Chabot College Mathematics

∆C vs dC If x0 is large, say 103

= 1 thousand, then adding 1 to the 1-thousand base makes ∆x ≈ dx

From Graph Observe

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R ($

M)

MTH15 • C vs dc

XYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.mXYf cnGraph6x6BlueGreenBkGndTemplate1306.m

C

dC

0x 10 x

11 00 xxx

11 00 xxdx

00 1 xCxCC

10

0

xx dx

dCdxmdC

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx16

Bruce Mayer, PE Chabot College Mathematics

∆C vs dC If x0 becomes VERY

LARGE, say 109 = 1 billion, then adding 1 to the 1-billion base makes ∆x = dx for all Practical Purposes

From Graph Observe

CxCxCdx

dCdxmdC

xx

111 00

0

0

0.2

1.2

p ($k/Ph)

R (

$M

)

MTH15 • C vs dc

C dC

xCy 11 00 xxdx

11 00 xxx

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx17

Bruce Mayer, PE Chabot College Mathematics

Marginal Cost

If x is the Production-Rate (Units/Time) and C(x) is the Unit-Cost ($/Unit) then for very large x0, Then the Cost to Produce ONE MORE UNIT of OutPut

Where dC/dx taken at x0 is the Cost to produce the NEXT UNIT of output; i.e., the Marginal Cost →

000

11 00xxx dx

dC

dx

dCdx

dx

dCdCCxCxC

00 '0

xCdx

dCxC

xM

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx18

Bruce Mayer, PE Chabot College Mathematics

Marginal: Revenue & Profit

By Similar Reasoning• The Marginal REVENUE from SELLING

one additional unit:

• The Marginal PROFIT from SELLING one additional unit:

00

11 00xx dx

dR

dx

dRdRRxRxR

00

11 00xx dx

dP

dx

dPdPPxPxP

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx19

Bruce Mayer, PE Chabot College Mathematics

Example Marginal Cost A Model for the total cost to farm “a”

acres of soybeans is approximately

Paridhi would like to expand her 400-acre SoyBean farm

For this Situation • Use marginal cost to estimate the increase

in cost incurred from increasing the farm’s acreage by one.

• What is the marginal average cost to farm the 401st acre?

120048001.0 2 aaaC

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx20

Bruce Mayer, PE Chabot College Mathematics

Example Marginal Cost

SOLUTION (a) The marginal cost

Approximate Paridhi’s increase in cost by computing the marginal cost at 400 acres:

48002.0 a

480)400(02.0)400('400

Cdz

dC

a

488

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx21

Bruce Mayer, PE Chabot College Mathematics

Example Marginal Cost

SOLUTION (b) The AVERAGE cost in $/acre:

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx22

Bruce Mayer, PE Chabot College Mathematics

Example Marginal Cost

So the marginal average cost is

At 400 Acres

So the average cost per acre is estimated to increase by 25¢ per acre when increasing total acreage by one

2120001.0 a

2

400

)400(120001.0400'

ACda

dAC

a0025.0

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx23

Bruce Mayer, PE Chabot College Mathematics

Approximation by Increments

As long as a function f(x) is differentiable at x = x0, then values of f near x0 can be approximated by

where ∆x is a small value called the (finite) difference of x

xdx

dfxfxxf

xx

0

00

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx24

Bruce Mayer, PE Chabot College Mathematics

Increm

ent G

eoM

etry

0.15 0.2 0.25 0.30.6

0.8

1

1.2

1.4

p ($k/Ph)

R (

$M

)MTH15 • Incrementals

XYf cnGraph6x6BlueGreenBkGndTemplate1306.m

xdx

dff

x

0

y

xfy

Tangent Line (slope)

x

0x xx 0 x0

0xf

xxf 0

fxf 0

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx25

Bruce Mayer, PE Chabot College Mathematics

MA

TL

AB

Co

de

% Bruce Mayer, PE% MTH-15 • 07Jul13% XYfcnGraph6x6BlueGreenBkGndTemplate1306.m%% The Limitsxmin = 0; xmax = 0.3; ymin =0; ymax = 1.4;% The FUNCTIONx = linspace(xmin,xmax,1000); y1 = x.*(12-10*x-100*x.^2); y2 = -4*(x-.2) +1.2% % The ZERO Lineszxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax];%% the 6x6 Plotaxes; set(gca,'FontSize',12);whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Greenplot(x,y1, 'LineWidth', 5),axis([.15 .3 .6 1.4]),... grid, xlabel('\fontsize{14}p ($k/Ph)'), ylabel('\fontsize{14}R ($M)'),... title(['\fontsize{16}MTH15 • Incrementals',]),... annotation('textbox',[.15 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'XYfcnGraph6x6BlueGreenBkGndTemplate1306.m','FontSize',7)hold onplot(x,y2, '-- m', 0.2,1.2, 'd r', 'MarkerSize', 6,'MarkerFaceColor', 'r', 'LineWidth', 2)plot([0.2,.2], [0.6,1.2], 'k', [.15,.2], [1.2,1.2], 'k',[0.25,.25], [0.6,0.8], 'k',... [.15,.25], [.8,.8], 'k', [0.2,.25], [1.2,1.2], '-.k', [0.25,.25], [1,1.2], '-.k', [.15,.25], [1,1], '-.k', 'LineWidth', 2)set(gca,'XTick',[xmin:.05:xmax]); set(gca,'YTick',[ymin:.2:ymax])hold off

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx26

Bruce Mayer, PE Chabot College Mathematics

Example Increment Calc

Let f(x) = x3. Then we can get a good idea of the value of f(4.02) by using the value of f(4) and then approximating using increments:

Note that f(4.02) = 64.96481 so we have a fair approximation

96.64

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx27

Bruce Mayer, PE Chabot College Mathematics

Example Incremental Analysis Jeong-Bin (JB to his Friends), owner of a

small frozen yogurt stand, is considering upgrading his infrastructure. A model for similar businesses is that each month he can expect to produce about Q(K) = 180K1/3 (K in hundreds of $) gallons/month of frozen yogurt when investing a hundred dollars in capital. • JB currently spends $500 dollars/month on capital

(K = 5).

Approximate the increase in JB’s production if he invests an additional $50 in capital.

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx28

Bruce Mayer, PE Chabot College Mathematics

Example Incremental Analysis

SOLUTION An estimate of the increase in

production uses the derivative of the production function:

Note that the input on production is in hundreds of dollars of capital, so we have a = 5 and ∆K = 0.5 so we get:

KdK

dQaQKaQ

a

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx29

Bruce Mayer, PE Chabot College Mathematics

Example Incremental Analysis

For Q(a+∆K)

Then

5.055.055

KdK

dQQQ

,603

1180 3/23/2 KKKQ

dK

d

055.318

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx30

Bruce Mayer, PE Chabot College Mathematics

Example Incremental Analysis

The 318.055 value is the new predicted level of production, as compared to Q(5) = 180(5)1/3 ≈ 307.976 an estimated increase of 318.055−307.976 = 10.259

gallons. Thus the investment metrics

mon$

Gal 2058.0

$50

monGal 259.10

K

Q

3.33% monGal 307.976

monGal 259.10for %

BaseLIneQ

QQ

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx31

Bruce Mayer, PE Chabot College Mathematics

Marginal vs Incremental

Marginal & Incremental Analysis BOTH Use

For the MARGINAL case:

For the INCREMENTAL CASE

xdx

dfxfxxf

xx

0

00

(Exactly) 1x

10%0

x

x

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx34

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

BMayer@ChabotCollege.edu

Chabot Mathematics

Appendix

srsrsr 22

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx35

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx36

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx37

Bruce Mayer, PE Chabot College Mathematics

BMayer@ChabotCollege.edu • MTH15_Lec-10_sec_2-5_Incrementals_.pptx38

Bruce Mayer, PE Chabot College Mathematics

top related