batteries as enabler for electrification of … · ageing: sanyo ur18650e source: stefan käbitz,...

Post on 03-Oct-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

BATTERIES AS ENABLER FOR ELECTRIFICATION OF

MOBILITY – DEVELOPMENT TRENDS OF MATERIALS

AND SYSTEMS

10/10/2019

EGBERT FIGGEMEIER

HELMHOLTZ INSTITUTE MÜNSTER (HI MS), IEK-12 & ISEA, RWTH AACHEN UNIVERSITY

WHY THE HYPE ABOUT BATTERIES?Batteries connect industries

Quelle Frankfurter Allgemeine Zeitung 2018. :https://www.faz.net/aktuell/wirtschaft/schneller-schlau/schneller-schlau-woher-kommt-deutsches-oel-her-

infografik-15914568.html

Seite 225.10.2019

Crude Oil Supply Germany 2018

Convergency of Energy Supply andMobility

BATTERY TECHNOLOGIES

• 1780: Luigi Galvani – Frog legs react when in touch with Cu and Fe

• 1799-1800: Volta pile by Alessandro Volta

• 1859: Invention of the rechargeable lead acid battery

• 1866: Leclanche Zelle (Zn/MnO2)

• 1899: Invention of the nickel-cadmium battery

• 1901: Invention of the nickel-iron battery

• 1990: First commercialization of nickel-metal hydride battery

• 1991: First commercialization of Lithium-ion battery by Sony

Look at the time frames of battery developments!!!

It´s a long story…..

….and the Nobel-price 2019…

BATTERY TECHNOLOGIES

LITHIUM-IONEN-BATTERIEN

TRENDS

Seite 525.10.2019

THE BATTERY INDUSTRY - TRENDS´Technology Switch in Automotive Industry at ….not behind…the Horizon

Source: Avicienne Energy, 2017

Seite 625.10.2019

• Larger numbers, faster assembly

• Cost is key for automotive applications!

• Cell price for OEMs at100 €/kWh

• Trend to larger cells (bis 150 Ah)….?

Speciality Commodity

THE BATTERY INDUSTRY - TRENDSFast growth – even accelerating

Source: Avicenne Energy 2018

Seite 725.10.2019

• And expected CAGR til 2025: 17 %.

• 520 GWh market in 2025

• > 500 Billion€ marketin 2025

THE BATTERY INDUSTRY – TRENDSExciting times……

Quelle: Clayton M. Christensen, „The Innovator´s Dilemma“, Harper Business, 2000.

Seite 825.10.2019

1. Technology – „Combustion Engines“

2. Technology – „Battery Electric Vehicles“

Time and/or Engineering Effort

Pro

duct

Perf

orm

ance We are here!

LITHIUM ION BATTERIESCustomer Expecations….????

Seite 925.10.2019

MarketM

iles p

er

hour

120

Market

Market

Mile

s

Seconds

2010 2015

2010 2015

2010 2015

300

10Customer segment decides!

Market

Range vs Costs

100 €/kWh

2010 2015

Driving Range

Top Speed

Acceleration

Price

SWITCH OF TECHNOLOGYReaching Maturity for Mass Market

Source: Volkswagen AG

Seite 1025.10.2019

Modular Electric Building Block (MEB)

e.g. for VW I.D.VW Golf – Internal Combustion Engine

22 kWh120 km

36 kWh>200 km

50 kWh>300 km

At same costs and price!

2014 2017 2020

THE BATTERY INDUSTRY - TRENDS

• Hybrids and battery electric vehicle sales

pick up speed

• China leading the pack: Strategic decision of

China to go for full electric

• EU requirements on CO2-emissions together

with cost decrease render battery electric

vehicles competitive

• US Tesla technology lead out of the niche…..

• BEV with > 40 kWh battery pack compared

to ca 0.015 kWh for a smartphone!

Automotive is the driver….and it´s a global trend picking up speed

Source: Avicenne Energy 2018

Seite 1125.10.2019

THE BATTERY INDUSTRY

• It is a multi-parameter optimization for each and every application!

Application Engineering

Seite 1225.10.2019

LIHTIUM ION BATTERIES

THE BASICS

Seite 1325.10.2019

LITHIUM ION BATTERIESWorking Principles

Moritz Teuber, ISEA, RWTH Aachen University

Seite 1425.10.2019

Charging

Charging

LITHIUM ION BATTERIESWorking Principles

Seite 1525.10.2019

Li

𝑒− 𝑒−Li

+𝑒−+𝑳𝒊+

Electrolyte Anode

LiMC

Solid-Electrolyte-Interphase (SEI)

LiF

LiCO3

> 4 V: Decomposition of electrolyte Passivation!

LITHIUM ION BATTERIESCharge-Discharge-Efficiencies

Source: F. Aupperle, G. G. Eshetu, E. Figgemeier et al. Accepted in Ápplied Energy Materials, 2019.

Seite 1625.10.2019

0 100 200 300 400 500 600 700 8002.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Pote

ntial (V

)

Capacity (mAh)

1 cycle

100 cycle

200 cycle

300 cycle

400 cycle

0 100 200 300 400 500 600 700 8002.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Pote

ntial (V

)

Capacity (mAh)

1 cycle

100 cycle

200 cycle

300 cycle

400 cycle

0 100 200 300 40090

95

100

105

110

without TEOSCN

with TEOSCN

Coulo

mbic

Effic

iency (

%)

Cycles

0 100 200 300 400

300

400

500

600

700

800

without TEOSCN

with TEOSCNDis

charg

e C

ap

acity (

mA

h)

Cycles

a) b)

c) d)

• Charge-Discharge-Efficiency > 99,999 %• >> 1000 Full Cycles!• 0,0001 %: Side reactions, electrolyte

decomposition, lithium inventory loss

Side Reactions! 𝑒−

LITHIUM-IONEN-BATTERIENMechanische Arbeit

Seite 1725.10.2019

Li

𝑒− 𝑒−+𝑒−

+𝑳𝒊+

Elektrolyt AnodeSolid-Electrolyte-Interphase (SEI)

Einlagerung von Lithium in Graphit Volumenänderung!

Li

AGEING / FATIQUE IN LITHIUM

ION BATTERIES

Seite 1825.10.2019

LITHIUM-ION-BATTERIESAgeing and Safety

Seite 1925.10.2019

Window of Stability Smaller

than Window of Safety

Stability Determines Business

Case

Safety Defines Application

Tem

pera

tur

Side Reactions/Thermal Runaway

Lithium Plating -Dendrites

Source: L. Lu et al. / Journal of Power Sources 226 (2013) 272e288

LITHIUM-ION-BATTERIES

• NMC/Graphite

• 2.05 Ah nominal capacity

• 2012-2014: Intensive ageing matrix

• Complete parametrization of electrochemical

models (porosity, electrode design,

impedance etc.)

• Project: E-Performance: Audi/RWTH

Ageing: Sanyo UR18650E

Source: Stefan Käbitz, Dissertation, RWTH Aachen Universität, 2016. ISEA.

Seite 2025.10.2019

LITHIUM-ION-BATTERIESAgeing: Test Matrix – Sanyo UR18650E

Source: Stefan Käbitz, Dissertation, RWTH Aachen Universität, 2016

Seite 2125.10.2019

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

100

DOD [%]

SO

C [%

]

T = 35 °CCycling1 C / 1 C

LITHIUM-ION-BATTERIESThermal Management and Ageing

Source: Master Thesis Carl Felix Braun, BatterieIngenieure GmbH, RWTH Aachen 2018.

2225.10.2019

• Air cooling is not able to ensure

homogeneous temperature within

stack of cells

• Capacity loss of cells at higher

temperature insight module higher!

LITHIUM-ION-BATTERIESThermal Management

Quelle: Master Thesis Carl Felix Braun, BatterieIngenieure GmbH, RWTH Aachen 2018.

Seite 2325.10.2019

• Stack liquid cooled

• Significantly better thermal

homogenity

• Low capacity loss

Capacity fade comparison between two battery modules

Air Cooled

Liquid Cooled

LITHIUM-ION-BATTERIESAgeing

Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M.... & Hammouche, A. (2005). Ageing mechanisms in lithium-ion

batteries. Journal of power sources, 147(1), 269-281. Pfrang, Figgemeier et al, Journal of Power Sources 392 (2018) 168–175.

Seite 2425.10.2019

Electrochemical/Chemical Geometric/Mechanical

Ageing Mechanisms

MECHANICAL AGEING IN LIBJelly Roll Expansion/Contraction

Source

Seite 2525.10.2019

0 °

120 °

180 °

0 °

120 °

180 °

MECHANICAL AGEING IN LIBJelly Roll Deformation and Electrode Delamination

Pfrang, Figgemeier et al, Journal of Power Sources 392 (2018) 168–175

Seite 2625.10.2019

Deformations Desorption - Cathode ….Anode almost always comes off….

• Mechanical stress on current collectors!

MECHANICAL AGEING IN LIBCapacity Loss & Jelly Roll Deformation

Seite 2725.10.2019

Micro-Shorts?

MATERIALS IN LITHIUM ION

BATTERIES

Seite 2825.10.2019

MATERIALS IN LIBA hot topic……

Seite 2925.10.2019

• Copper• Aluminum• Lithium• Organic solvents• Polymeric separators• Transition metals: Cobalt,

Nickel, Manganese etc.• Fluor (LiPF6)• Etc.

ANODE MATERIALS

10/25/2019 30

• Various graphites lead to optimized performances for applications

Natural Graphite

Synthetic Graphite

Time for Charge/Dischargeslow fast

Synthetic &

natural

Graphite

Sp

ecific

Ca

pa

city

in m

Ah/g

http://brussels-scientific.com/?p=4120

http://asbury.com/images/vein6.jpg

Advanced Materials 21(45):4593 - 4607 · December 2009

CATHODE MATERIALS

Material Energy

Density

Power

Density

Safety Stability Costs per

Ah

Example

LCO –

Lithium

Cobalt Oxide

0 + -- 0 -- Consumer

electronics

NCA – Nickel

Cobalt

Aluminum

+ + -- - 0 Tesla

NMC – Nickel

Manganese

Cobalt

0 0 - - 0 BMWi3

LMO –

Manganese

Cobalt

-- + 0 -- 0 ?

LFP – Iron

Phosphate

-- + + + + Busses in

China

Scale: Very bad -- / - / 0 / + / ++ very good

LITHIUM ION BATTERY MATERIALS ROADMAP

32

LMO (NMC111/4.1 V)

Graphit

LMO (NMC111/4.2V)

Graphite

HE-NMC(622/4.4V)

Graphite/Si (<20 %)

HE-NMC(622/4.4V)

Graphite/Si (>20 %)

2016 2018 2020 2022199X - 2010

HE-NMC (811>4.6V)

Graphite/Si (>40 %)

>4.5 V / Si- or

Lithium metal

anode + solid state

electrolyte /

separator

Energy Density

Year

Lower Cobalt – Higher Voltages

LCO/Graphite

Engineering

higher energy

density

LIB – TRENDS

• Nano-Materials enable high power due to

high surface area

• Nano-Materials suffer from high rate of

side reactions Degradation!

• Published data is almost never enough to

judge the promise of the material for real

applications

Nano Materialien is a great hype…..

Quelle: Chem. Rev. 2014, 114, 11444−11502

Seite 3325.10.2019

Nano does not solve the problem!

ALUMINUM IN LIB

• Cathode: NCA active material (e.g. Tesla/Panasonic Cells)

• Anode: Aluminum as active material

• Casing:

• Hard case prismatic cells

• Pouch bag cells

• Current collector

Plenty…..

Seite 3425.10.2019

ALUMINUM IN LIB

• Requirements:

• Cathode material with high adhesion

• High tear strength Fast continuous coating process

• Corrosion resistant….whatever that means at such voltages

Current Collector

Seite 3525.10.2019

ALUMINUM IN LIB

• HF created in-situ leads to corrosion of Al-current-collector in LiB

• Water-free electrodes and carbon coatings as preventive measures

Current Collector Corrosion

Source: C. Rahe, DU Sauer, E. Figgemeier et al., Journal of Power Sources Volume 433, 1 September 2019, 126631.

Seite 3625.10.2019

Source: J. Mater. Chem., 2011, 21, 9891–9911 | 9893

ALUMINUM IN LIB

• Up to µm-thick carbon coatings for preventing corrosion of Al-current-collector in LiB

• Most commonly wet-deposition of carbon slurry

• Improves adhesion ande corrosion properties

• Commercial products: e.g. – „Cambridge Energy Solutions:

• Conductive carbon coating

• Double side coating with 1 micron thickness each side

• Density: 0.5 g/m²

• Surface resistivity: < 30 ohms per 25 um²

• Substrate of Aluminum foil

• Purity > 99.9%

• Aluminium Thickness: 16 micron

Current Collector – Carbon Coating

Seite 3725.10.2019

ALUMINUM IN LIB

• Pouch bag foils:

• Multilayer architecture: PE-Al-PP, sometimes mechanically enhanced by….

• Tab sealing remains a challenge

• Cooling along the rim is difficult

• Notorious for electrolyte leakage

• Prismatic cell casings:

• Laser welded sealing

• Sometimes coatings insight for corrosion inhibition

Casings and Pouch Cell Bags

Seite 3825.10.2019

ALUMINUM IN LINAluminum as anode active material

Source: M.N. Obrovac, Leif Christensen, Dinh Ba Le and J.R. Dahn, J. Electrochem. Soc. 154 (2007) A849

Seite 3925.10.2019

High energy density! Potentially low cost and abundant material

ALUMINUM IN LIBAnode active material

Source: Lukas Well, Egbert Figgemeier, Haohao Yi,, ISEA, RWTH Aachen University, 2019.

Seite 4025.10.2019

Very slow insertion of Li into Al / Large irreversiblity / Pulverization of foil

SUMMARY

• Batteries market is growing double-digit and will grow for at least the next 10 years to come: Automotive is the

driver, but many applications come with it…..

• Current developments are cost not performance driven!

• Development times for new battery technologies are counted in decades Don´t wait for a revolution! …it

won´t come….

• Development times for new materials in established battery technologies: > 5 years!....minimum

• Multiple ageing mechanisms: Chemical, electrochemical, mechanical….

Pfrang, Figgemeier et al, Journal of Power Sources 392 (2018) 168–175

Seite 4125.10.2019

Aluminum plays a major role!

….maybe even more in the future…

Seite 4225.10.2019

Thanks!

top related