basic principles of nmr - freethcgerm.free.fr/img/pdf/principedebase_dmarion.pdfbasic principles of...

Post on 08-Aug-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Basic principles of NMR

Dominique MarionInstitut de Biologie

StructuraleJean-Pierre Ebel

CNRS - CEA - UJFGrenoble

PowerPoint 2004

for MacOS

Summary of the lecture

Summary of the lecture Bloch vector model

Basic quantum mechanics

Product operator formalism

Spin hamiltonian

NMR building blocks

Coherence selection - phase cycling

Pulsed field gradients

Nuclei observable by NMR

Why some nuclei have no spin ?The proton is composed of 3 quarks stuck together by gluons

12C 13C 14NAtomic number 6 6 7Mass number 6+6 6+7 7+7Spin quantum number

0 1/2 1

Why some nuclei have no spin ?

Isotopes with odd mass number

S = 1/2, 3/2 …

Isotopes with even mass number

Number of protons and neutron even

S = 0

Number of protons and neutron odd

S=1, 2, 3 …

(1H, 13C, 15N, 19F, 31P)

Larmor frequency

Laboratory reference frame

Rotating reference frameat frequency ω

Bloch equations without relaxation

B0 static magnetic fieldM macroscopic magnetization∧Cross-productB1 r.f. magnetic field

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Thermal motionPrecession in a fluctuating magnetic field

Non isotropic motion

Magnetization ⇒ Thermal equilibrium⇒ Fluctuating magnetic field

Spin-lattice relaxation T1

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Spin-spin relaxation T2

Precession in the transverse plane

The individual magnetic dipolesall have slightly differentprecession frequencies

True T2 relaxation

B0 inhomogeneity

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Subtitution

Incorporation of T1 and T2 relaxation times

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Longitudinal and transverse relaxation mechanisms areindependent

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

Bloch equations with relaxation90º pulse Magnetization in the XY plane

Precession around B0

Recovery to the equilibrium state ?

Transverse magnetization Longitudinal magnetization

rf pulses connectthe z axis with the transverse xy plane

Longitudinal and transverse magnetization

Thermal equilibrium

Longitudinal magnetization

Longitudinal and transverse magnetization

Thermal equilibrium

Longitudinal magnetizationAt room temperature « 1

Longitudinal and transverse magnetization

Thermal equilibrium

Longitudinal magnetizationAt room temperature « 1

Longitudinal and transverse magnetization

Thermal equilibrium

Longitudinal magnetizationAt room temperature « 1Transverse magnetization

Coherence

Bloch equations with relaxation

What are the limitations of the Bloch equations?

Bloch equations with relaxation

What are the limitations of the Bloch equations?

Planes : no collision

Bloch equations with relaxation

What are the limitations of the Bloch equations?

Planes : no collision Cars : collision

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

number of spins

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

number of spins

Vector Transformation

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

number of spins

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

z

yx

S

Sx, Sy, Sx, N

number of spins

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

z

yx

S

Sx, Sy, Sx, N

number of spinsAdditional terms if I and S interact

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

z

yx

S

Sx, Sy, Sx, N

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

z

yx

S

Sx, Sy, Sx, NVector16 terms

The limitations of the Bloch equationsSuitable dimensionality for description

Ix, Iy, Ix, N

z

yx

I

z

yx

S

Sx, Sy, Sx, NTransformation

16x16 terms

Vector16 terms

Basic Quantum Mechanics

Operator Performs some operation on a function

Ex: Dx derivative operator

Ex: 1 unity operator 1f(x) = f(x)

Commutation The effect of consecutive operationsmay depends on their order

Drive straight for 50 m Drive straight for 100 m

Turn left Turn left

Drive straight for 100 m Drive straight for 50 m

B{A( f(x) )} A{B( f(x) )} =?

[A,B] = AB - BA

Commutator

Basic Quantum Mechanics

Matrix representation of operators

!! The matrix representation depend on the basis

Product of two operators A.B

Usual law for matrix multiplication

Inverse

AB = AB = 1

A = B–1

Hermitian operator

A = A†Adjoint

Aij = Bji*

A = B† Unitary operator

A–1 = A†

Basic Quantum Mechanics

Eigenvalues

Change of basis Diagonal matrix

A |νi> = λi |νi>

Operator Eigenvalue( complex number)Eigenvector

Basic Quantum Mechanics

Eigenvalues

Change of basis Diagonal matrix

A |νi> = λi |νi>

Operator Eigenvalue( complex number)Eigenvector

Hermitian operator

A = A†

Realeigenvalues

Orthogonaleigenvectors

Basic Quantum Mechanics

Eigenvalues

Change of basis Diagonal matrix

A |νi> = λi |νi>

Operator Eigenvalue( complex number)Eigenvector

Hermitian operator

A = A†

Realeigenvalues

Orthogonaleigenvectors

If [A,B] = 0

i.e. A and B commute

∃ Basis such that

A and B diagonal

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

As [A,A]=0 A |νi> = λi |νi> An |νi> = λin |νi>

All power of an operator have the same eigenvector

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

Exponential of operators

For ordinary numbers

For operators

exp(A+B) = exp(A) . exp(B) only if [A,B]=0!

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

Exponential of operators

For ordinary numbers

For operators

Basic Quantum Mechanics

Exponential operators

A0 = 1 A2 =AAA1 =A A3 =AAA

Power of operators

Exponential of operators

For ordinary numbers

For operators

Complex exponential of operators

For operators

A hermitian E unitaryA = A† E–1 = E†

Basic Quantum Mechanics

Cyclic commutation

[A, B] = iC Definition [B, C] = iA [C, A] = iB

B

A

C

Sandwich formula

exp (-iθA) B exp (iθA) = B cos θ + C sin θ

Rotation angle

Cyclic permutation

Basic Quantum Mechanics

Cyclic commutation

BA

C

Rotation around the 3 axes

exp (-iθA) B exp (iθA) = B cos θ + C sin θ

exp (-iθB) C exp (iθB) = C cos θ + A sin θ exp (-iθC) A exp (iθC) = A cos θ + B sin θ

Liouville-von Neumann equation

Classical description

MagnetizationMagnetic field

Liouville-von Neumann equation

Classical description

MagnetizationMagnetic field

Quantum description

Density matrix Hamiltonian

Liouville-von Neumann equation

|α>

|β>E

Classical description

MagnetizationMagnetic field

Quantum description

Density matrix Hamiltonian

Liouville-von Neumann equation

|α>

|β>E

Classical description

MagnetizationMagnetic field

Quantum description

Density matrix Hamiltonian

|ψ> = cα |α> + cβ |β>

Single1/2 spin particle

Superposition state

Quantum indeterminacy

Liouville-von Neumann equation

|α>

|β>E

Classical description

MagnetizationMagnetic field

Quantum description

Density matrix Hamiltonian

|ψ> = cα |α> + cβ |β>

Single1/2 spin particle

Superposition state

Quantum indeterminacy

Ensemble of1/2 spin particles

Density matrix

Ensemble average

Liouville-von Neumann equation

Quantum description

Density matrix Hamiltonian

Liouville-von Neumann equation

Quantum description

Density matrix Hamiltonian

Hamiltonian:Time-independent part

Static magnetic field B0

Time-dependent part

Radiofrequency field B1 (pulses)

Scalar coupling

Liouville-von Neumann equation

Quantum description

Density matrix Hamiltonian

Hamiltonian:Time-independent part

Static magnetic field B0

Time-dependent part

Radiofrequency field B1 (pulses)

Scalar coupling

Transformation that render the pulse Hamiltonian time-independent ?

Rotating frame

σr = U σ U-1

Rotating frame

Rotating frame

σr = U σ U-1

Summary of the lecture Bloch vector model

Basic quantum mechanics

Product operator formalism

Spin hamiltonian

NMR building blocks

Coherence selection - phase cycling

Pulsed field gradients

Matrix representation of the spin operators

|α>|β>

E

We use the |α> and |β> states of the spin as a basis

Matrix representation of the spin operators

|α>|β>

E

We use the |α> and |β> states of the spin as a basis

Matrix representation of the spin operators

|α>|β>

E

We use the |α> and |β> states of the spin as a basis

[Ix,Iy] = i IzThe spin operators satisfy the commutation relation

Matrix representation of the spin operators

|α>|β>

E

We use the |α> and |β> states of the spin as a basis

[Ix,Iy] = i IzThe spin operators satisfy the commutation relation

Matrix representation of the spin operators

|α>|β>

E

We use the |α> and |β> states of the spin as a basis

[Ix,Iy] = i IzThe spin operators satisfy the commutation relation

Matrix representation of the spin operators

Matrix representation of the spin operators

The transverse coherence has a phase !

Matrix representation of the spin operators

Bra notation (1×2 vectors)

Ket notation (2×1 vectors)

Bras / Kets

Matrix representation of the spin operators

Bra notation (1×2 vectors)

Ket notation (2×1 vectors)

Bras / Kets Operator(square matrix)

Before

After

Matrix representation of the spin operators

Bra notation (1×2 vectors)

Ket notation (2×1 vectors)

Bras / Kets

Bra ← adjoint → Ket

<n| = { |n> } †

Operator(square matrix)

Before

After

Matrix representation of the spin operators

Bra notation (1×2 vectors)

Ket notation (2×1 vectors)

Bras / Kets

Bra ← adjoint → Ket

<n| = { |n> } †

Operator(square matrix)

Before

After

Orthonormal basis

Matrix representation of the spin operators

Bra notation (1×2 vectors)

Ket notation (2×1 vectors)

Bras / Kets

Bra ← adjoint → Ket

<n| = { |n> } †

Matrix representation using differentbasis sets can be interconvertedusing unitary transformation

Operator(square matrix)

Before

After

Orthonormal basis

Multispin systemsBloch model Strictly applicable only to a

system of non-interacting spins

Quantum mechanics Direct product space

Spins 1 2 3

Basis size 2 4 8

Nb of basis vectors = 2N

The two spins are independent

|ψ> = |ψ1> ⊗ |ψ2>

basis vectorfor spin #1

basis vectorfor spin #2

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Incorrect !

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Incorrect !

Dimension

2×2

4×4

Operators

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators AB|ij> = (A⊗B)(|i> ⊗ |j> ) = A |i> ⊗B|j>

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators AB|ij> = (A⊗B)(|i> ⊗ |j> ) = A |i> ⊗B|j>

Productoperator

A is an operator that acts on the i spin

B is an operator that acts on the j spin

AB= (A⊗B) = (A⊗E) (E⊗B)

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators AB|ij> = (A⊗B)(|i> ⊗ |j> ) = A |i> ⊗B|j>

Iz|αβ> = (Iz ⊗E)(|α> ⊗ |β> ) = Iz |α> ⊗E|β> = 1/2 |α> ⊗ |β> = 1/2 | αβ >

Ex:

Iz|αβ> = 1/2 |αβ>

Productoperator

A is an operator that acts on the i spin

B is an operator that acts on the j spin

AB= (A⊗B) = (A⊗E) (E⊗B)

Multispin systems

|ψ> = |ψ1> ⊗ |ψ2>

Operators AB|ij> = (A⊗B)(|i> ⊗ |j> ) = A |i> ⊗B|j>

Iz|αβ> = (Iz ⊗E)(|α> ⊗ |β> ) = Iz |α> ⊗E|β> = 1/2 |α> ⊗ |β> = 1/2 | αβ >

Ex:

Iz|αβ> = 1/2 |αβ>

Iz Sz| αβ > = (Iz ⊗ Sz)(|α> ⊗ |β> ) = Iz |α> ⊗ Sz |β > = 1/2 |α> ⊗ –1/2 |β> = –1/4 | αβ >

Iz Sz| αβ > = –1/4 | αβ >

Productoperator

A is an operator that acts on the i spin

B is an operator that acts on the j spin

AB= (A⊗B) = (A⊗E) (E⊗B)

Multispin systems - product operators

Spectrum of a AX spin system

Multispin systems - product operators

Spectrum of a AX spin system

Thermal equilibrium populations

Product operators - coherence /population

Populations

Az XzAzXz

Product operators - coherence /population

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

±1 Quantum coherence

Ax Xx

Ay Xy

Product operators - coherence /population

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

0 / 2 Quantum coherence

AxXy

AyXx

AxXx

AyXy

Multispin systems - product operators

Spectrum of a AX spin system

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of A

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of A

X(β) X(α)

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of A

X(β) X(α)

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of ASpectrum of X

X(β) X(α)

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of ASpectrum of X

X(β) X(α)A(β) A(α)

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of a AX spin system

Spectrum of ASpectrum of X

X(β) X(α)A(β) A(α)

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Multispin systems - product operators

Spectrum of A

Multispin systems - product operators

Spectrum of A

In-phase coherence of A along y

Multispin systems - product operators

Spectrum of A

In-phase coherence of A along y

Anti-phase coherence of A along y

Multispin systems - product operators

Spectrum of A

In-phase coherence of A along y

Anti-phase coherence of A along y

with respect to X

Multispin systems - product operators

Spectrum of A

Multispin systems - product operators

Spectrum of A

Multispin systems - product operators

Spectrum of A

Multispin systems - product operators

Spectrum of A

|αα>

|αβ>

|ββ>

|βα>

Multispin systems - product operators

Spectrum of A

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Rule 2:

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Rule 2:

[Iy,Ix] = – i Iz

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:y

xz

[Iy,Iz] = i Ix

[Iz,Ix] = i Iy [Sx,Sy] = i Sz

[Sy,Sz] = i Sx

[Sz,Sx] = i Sy

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Quantum description

Density matrix Hamiltonian

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

Commuting operators

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

[Ip Sq , Ir] = Ip Ir Sq – Ir Ip Sq

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

[Ip Sq , Ir] = Ip Ir Sq – Ir Ip Sq

Rule 5:

[Ip Sq , Ir Ss ] =

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

[Ip Sq , Ir] = Ip Ir Sq – Ir Ip Sq

Rule 5:

[Ip Sq , Ir Ss ] =

0if p≠r and q≠s

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

[Ip Sq , Ir] = Ip Ir Sq – Ir Ip Sq

Rule 5:

[Ip Sq , Ir Ss ] =

0if p≠r and q≠s

1/4[Sq , Ss ]if p=r

Commutation in coherence space

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

[Ip Sq , Ir] = Ip Sq Ir – Ir Ip Sq

[Ip Sq , Ir] = Ip Ir Sq – Ir Ip Sq

Rule 5:

[Ip Sq , Ir Ss ] =

0if p≠r and q≠s

1/4[Sq , Ss ]if p=r

1/4[Ip , Ir]if q=s

Commutation in coherence space (summary)

[Ix,Iy] = i Iz

Rule 1:

Rule 2:

[Iy,Ix] = – i Iz

Rule 3:

[Ip,Iq] = 0 for (p,q) = (x,y,z)

Rule 4:

[Ip Sq , Ir] = [Ip , Ir] Sq

Rule 5:

[Ip Sq , Ir Ss ] =

0if p≠r and q≠s

1/4[Sq , Ss ]if p=r

1/4[Ip , Ir]if q=s

Operator product

Operator product

Any operator commuteswith itself

Operator product

Operator product

[Iz,Ix] ≠ 0They do not

commute

Operator product

Operator product

Any operator of Icommutes with

any operator of S

Operator product

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

Shielding tensor

(fast tumbling in liquid)

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction ( J )

H = J I . S = J (IxSx + IySy+ IzSz)

Terms of the spin hamiltonian

Spins

B0 (static field)

B1 (rf field)

Other spins

Zeeman interaction

H = – (1 — σiso) B0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction ( J )

H = J I . S = J (IxSx + IySy+ IzSz)

Dipolar interaction ( D )

→ 0 in isotropic liquids

Terms of the spin hamiltonian (conflicts)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Terms of the spin hamiltonian (conflicts)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

[Iz,Ix] ≠ 0 [Iz,Iy] ≠ 0

Terms of the spin hamiltonian (conflicts)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Terms of the spin hamiltonian (conflicts)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

[Iz,IxSx] ≠ 0 [Iz,IySy] ≠ 0

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

During the pulses

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis: short pulseThe spins do not precessduring the pulse

During the pulses

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis: short pulseThe spins do not precessduring the pulse

During the pulses

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis: short pulseThe spins do not precessduring the pulse

During the pulses

Trajectories of magnetizations

RF field strength = 1000 Hz

Offsets = 100, 250, 500 Hz

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (1) : weak coupling

JIS << | ωI - ωS|

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (1) : weak coupling

JIS << | ωI - ωS|

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (1) : weak coupling

JIS << | ωI - ωS|

During the freeprecession

H = JIS IzSz

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (2) : the chemical shift evolution is eliminated

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (2) : the chemical shift evolution is eliminated

During the freeprecession

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (2) : the chemical shift evolution is eliminated

During the freeprecession

[IzSz,IxSx] = 0

[IxSx,IySy] = 0

[IzSz,IySy] = 0

Terms of the spin hamiltonian (solutions)

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (ωt) - Iy sin(ωt)]

Scalar interaction

H = J I . S = J (IxSx + IySy+ IzSz)

Hypothesis (2) : the chemical shift evolution is eliminated

During the freeprecession

[IzSz,IxSx] = 0

[IxSx,IySy] = 0

[IzSz,IySy] = 0

Isotropicmixing

Evolution of the spin system

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (φ) - Iy sin(φ)]

Scalar interaction

H = JIS IzSz

exp (-iθH) σ0 exp (iθH) = σ0 cos θ + σ1 sin θ

[σ0 , H] = i σ1

Evolution of the spin system

Zeeman interaction

H = – ω0 Iz

RF field

H = – ω1[ Ix cos (φ) - Iy sin(φ)]

Scalar interaction

H = JIS IzSz

exp (-iθH) σ0 exp (iθH) = σ0 cos θ + σ1 sin θ

Quantum description

Density matrix Hamiltonian

[σ0 , H] = i σ1

Evolution of the spin system (chemical shift)

Zeeman interaction

H = – ω0 Iz

[Iy,Iz] = i Ix

[Ix,Iz] = –i Ix

[Iz,Iz] = 0

Evolution of the spin system (chemical shift)

Zeeman interaction

H = – ω0 Iz

[Iy,Iz] = i Ix

[Ix,Iz] = –i Ix

[Iz,Iz] = 0

Evolution of the spin system (chemical shift)

Zeeman interaction

H = – ω0 Iz Ix

[Iy,Iz] = i Ix

[Ix,Iz] = –i Ix

[Iz,Iz] = 0

Evolution of the spin system (chemical shift)

Zeeman interaction

H = – ω0 Iz Ix Ix cos ω0t

Iy sin ω0t

[Iy,Iz] = i Ix

[Ix,Iz] = –i Ix

[Iz,Iz] = 0

Evolution of the spin system (radiofrequency)

RF field

H = – ω1[ Ix cos (φ) – Iy sin(φ)]

(rotating frame)

Evolution of the spin system (radiofrequency)

RF field

H = – ω1[ Ix cos (φ) – Iy sin(φ)]

(rotating frame)Phase of the rf

Evolution of the spin system (radiofrequency)

RF field

H = – ω1[ Ix cos (φ) – Iy sin(φ)]

(rotating frame)

H = – ω1 Ix

Pulse around x

Phase of the rf

Evolution of the spin system (radiofrequency)

RF field

H = – ω1[ Ix cos (φ) – Iy sin(φ)]

(rotating frame)

H = – ω1 Ix

Pulse around x

H = – ω1 Iy

Pulse around y

Phase of the rf

Evolution of the spin system (radiofrequency)

RF field

H = – ω1 Ix

(rotating frame)

Evolution of the spin system (radiofrequency)

RF field

H = – ω1 Ix

(rotating frame)

Iz

Evolution of the spin system (radiofrequency)

RF field

H = – ω1 Ix

(rotating frame)

Iz Iz cos ω1t

Evolution of the spin system (radiofrequency)

RF field

H = – ω1 Ix

(rotating frame)

Iz Iz cos ω1t

– Iy sin ω1t

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Ix

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Ix Ix cos πJt

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Ix Ix cos πJt

2IySz sin πJt

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Ix Ix cos πJt

2IySz sin πJt

J

Definition of J(chemistry)

Evolution of the spin system (scalar coupling)

Scalar interaction

H = JIS IzSz

x y

[Ix, 2IzSz] = i 2IySz

[Iy, 2IzSz] = – i 2IySz

[Iz, 2IzSz] = 0

Ix Ix cos πJt

2IySz sin πJt

J

Definition of J(chemistry)

J

Summary of the lecture Bloch vector model

Basic quantum mechanics

Product operator formalism

Spin hamiltonian

NMR building blocks

Coherence selection - phase cycling

Pulsed field gradients

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

Δ Δ

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

Δ Δ

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (1)Spin echoes in heteronuclear spin systems

1H

X

1H-15N

1J ≈ 70 Hz

1H-13C

1J ≈ 120-140 Hz

180º pulses

Δ Δ

Echo

NMR building blocks (2)Spin echoes in homonuclear spin systems

Δ Δ

Ix Ix cos ω0Δ

Iy sin ω0Δ

Chemical shift

NMR building blocks (2)Spin echoes in homonuclear spin systems

Δ Δ

Ix Ix cos ω0Δ

Iy sin ω0Δ

Ix cos ω0Δ

–Iy sin ω0Δ

Chemical shift

NMR building blocks (2)Spin echoes in homonuclear spin systems

Δ Δ

Ix Ix cos ω0Δ

Iy sin ω0Δ

Ix cos ω0Δ

–Iy sin ω0Δ

Ix cos ω0Δ cos ω0Δ

–Iy sin ω0Δ cos ω0Δ

Iy cos ω0Δ sin ω0Δ

+Ix sin ω0Δ sin ω0Δ

Chemical shift

NMR building blocks (2)Spin echoes in homonuclear spin systems

Δ Δ

Ix Ix cos ω0Δ

Iy sin ω0Δ

Ix cos ω0Δ

–Iy sin ω0Δ

Ix cos ω0Δ cos ω0Δ

–Iy sin ω0Δ cos ω0Δ

Iy cos ω0Δ sin ω0Δ

+Ix sin ω0Δ sin ω0Δ

Chemical shift

NMR building blocks (2)Spin echoes in homonuclear spin systems

Δ Δ

Ix Ix cos ω0Δ

Iy sin ω0Δ

Ix cos ω0Δ

–Iy sin ω0Δ

Ix cos ω0Δ cos ω0Δ

–Iy sin ω0Δ cos ω0Δ

Iy cos ω0Δ sin ω0Δ

+Ix sin ω0Δ sin ω0Δ

Chemical shift

Ix

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

2(–Iy)(–Sz) sin πJt

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

2IySz sin πJt cos πJt

–Ix sin πJt sin πJt

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

2IySz sin πJt cos πJt

–Ix sin πJt sin πJt

Ix cos πJt cos πJt      – sin πJt sin πJt

2IySz sin πJt cos πJt + cos πJt sin πJt

NMR building blocks (3)Spin echoes in homonuclear spin systems

t tJ-coupling

Ix Ix cos πJt

2IySz sin πJt

x

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

2IySz sin πJt cos πJt

–Ix sin πJt sin πJt

Ix cos πJt cos πJt      – sin πJt sin πJt

2IySz sin πJt cos πJt + cos πJt sin πJt

Ix cos 2πJt

2IySz sin 2πJt

NMR building blocks (4)Spin echoes in homonuclear spin systems

Δ Δ

Chemical shift

Ix Ix

J-coupling

Ix cos 2πJt

2IySz sin 2πJt

Ix

NMR building blocks (4)Spin echoes in homonuclear spin systems

Δ Δ

Chemical shift

Ix Ix

J-coupling

Ix cos 2πJt

2IySz sin 2πJt

Ix

NMR building blocks (5)Spin echoes in heteronuclear spin systems

1H

X

Δ Δ

NMR building blocks (5)Spin echoes in heteronuclear spin systems

1H

X

Δ Δ

Δ Δ

NMR building blocks (5)Spin echoes in heteronuclear spin systems

1H

X

Δ Δ

Δ Δ

These two cases are not possiblefor homonuclear spin-systems(band selective pulses!)

NMR building blocks (6)Spin echoes in heteronuclear spin systems

Ix Ix cos 2ω0(2Δ)

Iy sin ω0(2Δ)

X Chemical shift

1H

X

Δ Δ

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

Ix cos πJt

–2IySz sin πJt

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

Ix cos πJt

–2IySz sin πJt

Ix cos πJt

–2IySz sin πJt

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

Ix cos πJt

–2IySz sin πJt

Ix cos πJt

–2IySz sin πJt

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

Ix sin πJt sin πJt

–2IySz sin πJt cos πJt

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

Ix cos πJt

–2IySz sin πJt

Ix cos πJt

–2IySz sin πJt

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

Ix sin πJt sin πJt

–2IySz sin πJt cos πJt

NMR building blocks (7)Spin echoes in heteronuclear spin systems

J-coupling

Ix Ix cos πJt

2IySz sin πJt

1H

X

Δ Δ

Ix cos πJt

–2IySz sin πJt

Ix cos πJt

–2IySz sin πJt

Ix cos πJt cos πJt

2IySz cos πJt sin πJt

Ix sin πJt sin πJt

–2IySz sin πJt cos πJtIx Ix

NMR building blocks (8)Spin echoes in heteronuclear spin systems

Ix Ix

J-coupling

1H

X

Δ Δ

Chemical shift

Ix Ix cos 2ω0(2Δ)

Iy sin ω0(2Δ)

NMR building blocks (8)Spin echoes in heteronuclear spin systems

Ix Ix

J-coupling

1H

X

Δ Δ

Chemical shift

Ix Ix cos 2ω0(2Δ)

Iy sin ω0(2Δ)

NMR building blocks (9)Spin echoes in heteronuclear spin systems

1H

X

Δ Δ

Chemical shift

Ix Ix cos 2ω0(2Δ)

Iy sin ω0(2Δ)

J-coupling

Ix cos 2πJt

2IySz sin 2πJt

Ix

Δ Δ

Coherence selection (1)

Pulse sequences with three 90º pulses

Coherence selection (1)

t1t2

DQF COSY

Pulse sequences with three 90º pulses

Coherence selection (1)

t1t2

τ t1t2τ

DQF COSY

Double quantumspectroscopy

Pulse sequences with three 90º pulses

Coherence selection (1)

t1t2

τ t1t2τ

t1 t2τ

DQF COSY

Double quantumspectroscopy

NOESY

Pulse sequences with three 90º pulses

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

90º

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

90º

z

yx

Longitudinalmagnetization

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

90º

z

yx

Longitudinalmagnetization

z

yx

Transversecoherence

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

90º

z

yx

Longitudinalmagnetization

z

yx

Transversecoherence

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

90º

z

yx

Longitudinalmagnetization

z

yx

Transversecoherence

Coherence selection (2)

Coherence order

z

yx

Mag

netic

fiel

d

z

yx

Longitudinalmagnetization

z

yx

Transversecoherence

φ0×φ

1×φ

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φ

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φIz Iz

φ

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φIz Iz

φ

Ix Ixφ

Ix

cos φ

sin φ+

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φIz Iz

φ

Ix Ixφ

Ix

cos φ

sin φ+

Rising / lowering operators

I+ Ix Ix+ i=

I– Ix Ix– i=

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φIz Iz

φ

Ix Ixφ

Ix

cos φ

sin φ+

Coherence selection (3)

Coherence order

z

yx

Mag

netic

fiel

d

φIz Iz

φ

Ix Ixφ

Ix

cos φ

sin φ+

I+ I+φ

exp(–i φ)

Coherence selection (4)

Coherence order

z

yx

Mag

netic

fiel

d

φ

Coherence selection (4)

Coherence order

0 / 2 Quantum coherences

AxXy

AyXx

AxXx

AyXy

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>

z

yx

Mag

netic

fiel

d

φ

Coherence selection (4)

Coherence order

0 / 2 Quantum coherences

AxXy

AyXx

AxXx

AyXy

|αα>

|αβ>

|ββ>

|βα>

|αα>

|αβ>

|ββ>

|βα>2IxSx

I–S–I+S+ I–S+I+S–

=

+ + + )1/2 (

Order: 2 2 0 0

z

yx

Mag

netic

fiel

d

φ

Coherence selection (5)t1

t2

DQF COSY

τ t1t2τ

Double quantumspectroscopy

t1 t2τ

NOESY

Coherence selection (5)t1

t2

DQF COSY

τ t1t2τ

Double quantumspectroscopy

t1 t2τ

NOESY

Coherence selection (5)t1

t2

DQF COSY

τ t1t2τ

Double quantumspectroscopy

t1 t2τ

NOESY

τ t1t2τ

Double quantumspectroscopy

Coherence selection (5)t1

t2

DQF COSY

τ t1t2τ

Double quantumspectroscopy

t1 t2τ

NOESY

τ t1t2τ

Double quantumspectroscopy

t1 t2τ

NOESY

Coherence selection (6)

Phase cycling

Coherence selection (6)

Phase cycling

φ → φ+Δφ

Coherence selection (6)

Phase cycling

φ → φ+Δφ

Δp

Coherence selection (6)

Phase cycling

φ → φ+Δφ

Δp

Coherence phase shift:

Δp × Δφ

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –3

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360º

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360º

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

1

2

3

4

90º

180º

270º

180º

360º

540º

180º

180º

Step Δφ 2 × Δφmod 360º

–2

Coherence selection (7)Phase cycling for the selection of

the Δp=–3 coherence pathway

+2+1

0–1

–2

Δp= –31

2

3

4

90º

180º

270º

270º

540º

810º

270º

180º

90º

Step Δφ 3 × Δφmod 360ºrecv

phase

1

2

3

4

90º

180º

270º

180º

360º

540º

180º

180º

Step Δφ 2 × Δφmod 360º

–2

Pulsed field gradients (1)

B0eff

Homogeneous

magnetic field(well shimmed magnet)

Pulsed field gradients (1)

B0eff

B0eff

Homogeneous

magnetic field(well shimmed magnet)

Inhomogeneous magnetic field(field gradient)

Pulsed field gradients (1)

B0eff

B0eff

Homogeneous

magnetic field(well shimmed magnet)

Inhomogeneous magnetic field(field gradient)

I+ I+ω0 exp(–i ω0t)

I+

I+

ω0 + γ G(z)

exp(–i [ ω0 + γ G(z)]t)

Pulsed field gradients (1)

B0eff

B0eff

Homogeneous

magnetic field(well shimmed magnet)

Inhomogeneous magnetic field(field gradient)

I+ I+ω0 exp(–i ω0t)

I+

I+

ω0 + γ G(z)

exp(–i [ ω0 + γ G(z)]t)

Pulsed field gradients (2)

I+

I+

γΙ G(z)

exp(–i γΙ G(z)t)

Pulsed field gradients (2)

I+

I+

γΙ G(z)

exp(–i γΙ G(z)t)

I+S+ (γΙ +γS )G(z)

exp(–i (pI γΙ +pS γS ) G(z) t)I+S+

pI coherence order

associated with spin I

Pulsed field gradients (3)

rf

pfg g1 g2

τ1 τ2

p1

p2

Pulsed field gradients (3)

rf

pfg g1 g2

τ1 τ2

p1

p2

Refocusing condition

g1τ1

g2τ2

–p1

–p2

=

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

rf

pfg g gτ τ

+p

–p

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

Refocusing pulseInversion pulse

Pulsed field gradients (4)

Imperfect 180º pulses

I

pfg+g

–gτ

τ

S

pI

pS

The end…

top related