basic curve surface

Post on 13-May-2015

1.709 Views

Category:

Business

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Basic theory of curve and surface

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Geometric representation

• Parametric

• Non-parametric– Explicit

– Implicit

y = f(x)

f(x, y) = 0

x = x(u), y = y(u)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Geometric representation

• Example - circle

• Parametric

• Non-parametric– Explicit

– Implicit

y = R2 – x2

x2 + y2 – R2 = 0

x = R cos, y = R sin

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• Each form has its own advantages and disadvantages, depending on the application for which the equation is used.

Geometric representation

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Non-parametric (explicit)

• Only one y value for each x value

• Cannot represent closed or multiple-valued curves such as circle

y = f(x)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Non-parametric (implicit)

• Advantages – can produce several type of curve – set the coefficients

• Disadvantages– Not sure which variable to choose as the

independent variable

f(x,y) = 0ax2 + bxy + cy2 + dx + ey + f = 0

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Non-parametric (cont)

• Disadvantages– Non-parametric elements are axis dependant, so the

choice of coordinate system affects the ease of using the element and calculating their properties.

– Problem if the curve has a vertical slope (infinity).

– They represent unbounded geometry e.g

ax + by + c = 0

define an infinite line

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

parametric

• Express relationship for the x, y and z coordinates not in term of each other but of one or more independent variable (parameter).

• Advantages– Offer more degrees of freedom for controlling

the shape• (non-parametric) y= ax3 + bx2 + cx + d• (parametric) x = au3 + bu2 + cu + d• y = eu3 + fu2 + gu + h

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric (cont)

• Advantages (cont) – Transformations can be performed directly on

parametric equations.– Parametric forms readily handle infinite slopes

without breaking down computationally

dy/dx = (dy/du)/ (dx/du)– Completely separate the roles of the dependent

and independent variable.

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric (cont)

• Advantages (cont)

- easy to express in the form of vectors and matrices

- Inherently bounded.

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric curve

• Use parameter to relate coordinate x and y (2D).

• Analogy– Parameter t (time) – [ x(t), y(t) as the position

of the particle at time t ]

x

y

t1

t2t3

t4

t5 t6

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric curve

• Fundamental geometric objects – lines, rays and line segment

ab

line

ab

ray

ab

Line segment

All share the same parametric representation

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric linea = (ax, ay), b = (bx, by)

x(t ) = ax + (bx - ax)t

y(t) = ay + (by - ay)t • Parameter t is varied from 0 to 1 to define all point along the line• When t = 0, the point is at “a”, as t increases toward 1, the point

moves in a straight line to b.

• For line segment : 0 t 1• For line : - t • For ray : 0 t

ab

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric line

• Example– A line from point (2, 3) to point (-1, 5) can be

represented in parametric form as

x(t) = 2 + (-1 – 2)t = 2 – 3ty(t) = 3 + (5 – 2)t = 3 + 3t

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric line

• Positions along the line are based upon the parameter value– E.g midpoint of a line occurs at t = 0.5

• Exercise :Find the parametric form for the segment with

endpoints (2, 4, 1) and (7, 5, 5). Find the midpoint of the segment by using t = 0.5

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric line

• Answer:

Parametric form:

x(t) = 2 + (7 –2)t = 2 + 5t

y(t) = 4 + (5 – 4)t = 4 + t

z(t) = 1 + (5 – 1)t = 1 + 4t

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• Answer

Midpoint

x(0.5) = 2 + 5(0.5) = 5.5 6

Y(0.5) = 4 + (0.5) = 4.5 5

Z(0.5) = 1 + 4(0.5) = 3 3

Parametric line

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• Another basic example• Conic section - the curves / portions of the curves,

obtained by cutting a cone with a plane.• The section curve may be a circle, ellipse,

parabola or hyperbola.

Parametric curve (conic section)

ellipse hyperbola parabola

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric curve (circle)

• The simplest non-linear curve - circle

- circle with radius R centered at the origin

• x(t) = R cos(2t)

• y(t) = R sin(2t)

0 t 1

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• If t = 0.125 a 1/8 circle

Parametric curve (circle)

–t = 0.25 a 1/4 circle

–t = 0.5 a ½ circle

t = 1 a circle

Circular arc

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• Circle with center at (xc, yc)

• x(t) = R cos(2t) + xc,

• y(t) = R sin(2t) + yc ,

Parametric curve (circle)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric curve

• Ellipse– x(t) = a cos(2t)– y(t) = b sin(2t)

• Hyperbola– x(t) = a sec(t)– y(t) = b tan(t)

• parabola– x(t) = at2

– y(t) = 2at

a

b

ab

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Control for this curve

• Shape (based upon parametric equation)

• Location (based upon center point)

• Size– Arc (based upon parameter range)– Radius (a coefficient to unit value)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Parametric curve• Generally

– A parametric curve in 3D space has the following form• F: [0, 1] (x(t), y(t), z(t))

– where x(), y() and z() are three real-valued functions. Thus, F(t) maps a real value t in the closed interval [0,1] to a point in space

– for simplicity, we restrict the domain to [0,1]. Thus, for each t in [0,1], there corresponds to a point (x(t), y(t), z(t) ) in space.

If z( ) is removed - ? A curve in a coordinate plane

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Tangent vector and tangent line

• Tangent vector– Vector tangent to the slope of curve at a given point

• Tangent line– The line that contains the tangent vector

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• F(t) = (x(t), y(t), z(t))

• Tangent vector :– F’(t) = (x’(t), y’(t), z’(t))

Where x’(t)= dx/dt, y’(t)= dy/dt, z’(t)= dz/dt

• Magnitude /length– If vector V = (a, b, c) |V| = a2 + b2 + c2

• Unit vector – Uv = V / |V|

Compute tangent vector

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Compute tangent line

• Tangent line at t is either– F(t) + uF’(t)

or– F(t) + u(F’(t)/|F’(t)|) if prefer unit vector

– u is a parameter for line

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

example

• Question:

- given a Circle, F(t) = (Rcos(2t), R sin(2t)) , 0 t 1

Find tangent vector at t and tangent line at F(t).

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

example

• Answer

dx = Rcos(2t), dy = R sin(2t)

x’(t) = dx/dt = - 2 Rsin (2t),

y’(t) = dy/dt = 2Rcos(2t)

Tangent vector = (- 2 Rsin (2t), 2Rcos(2t))

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

example

• Answer

• Tangent line– F(t) + u(F’(t))– (Rcos(2t), R sin(2t)) + u(- 2 Rsin (2t),

2Rcos(2t))– (Rcos(2t) + u(- 2 Rsin(2t))) , (R sin(2t) +

u(2Rcos(2t)))

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Example • Check / prove

• Let say, t = 0,Tangent vector = (- 2 Rsin (2t), 2Rcos(2t))

= (0, 2R)

tangent line = (Rcos(2t) + u(- 2 Rsin(2t))) , (R sin(2t) +

u(2Rcos(2t)))

= (R, u(2R))

R

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Tangent vector

• Slope of the curve at any point can be obtained from tangent vector.

• Tangent vector at t = (x’(t), y’(t))

• Slope at t = dy/dx = y’(t)/x’(t)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• The curvature at a point measures the rate of curving (bending) as the point moves along the curve with unit speed

• When orientation is changed the curvature changes its sign, the curvature vector remains the same

• Straight line Straight line curvature = ? curvature = ?

curvature

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

curvature

• Circle is tangent to the curve at P

• lies toward the concave or inner side of the curve at P

• Curvature = 1/r , r radius

PP

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

curvature

• The curvature at u, k(u), can be computed as follows:

• k(u) = | f'(u) × f''(u) | / | f'(u) |3 • How about curvature of a circle ?

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Curve use in design

• Engineering design requires ability to express complex curve shapes (beyond conic) and interactive.– Bounding curves for turbine blades, ship hulls,

etc– Curve of intersection between surfaces.

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• A design is “GOOD” if it meets its design specifications : These may be either :– Functional - does it works.– Technical - is it efficient, does it meet certain

benchmark or standard.– Aesthetic - does it look right, this is both

subjective and opinion is likely to change in time or combination of both.

Curve use in design

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Representing complex curves•Typically represented

–A series of simpler curve (each defined by a single equation) pieced together at their endpoints.(piecewise construction)

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

Representing complex curves

• Typically represented

– Simple curve may be linear or polynomial

– Equation for simpler curves based on control points (data points used to define the curve).

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

An interactive curve design

a) Desired curve b) User places points

c) The algorithm generates many points along a “nearby” curve

Disediakan oleh Suriati bte Sadimon, GMM, FSKSM, UTM

• Interactive design consists of the following steps

1. Lay down the initial control points

2. Use the algorithm to generate the curve

3. If the curve satisfactory, stop.

4. Adjust some control points

5. Go to step 2.

An interactive curve design

top related