back to sugars: “enzymatic” synthesis · northrup, a. b. and macmillan, d. w. c. j. am. chem....

Post on 16-May-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Back to Sugars: “Enzymatic” Synthesis

Zhensheng DingNov. 04

Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752

Northrup, A. B. and MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798 - 6799

Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152

List, B. Tetrahedron 2002, 58, 5573

Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed , L. A.; Sharpless, K. B. Science 1983, 220, 949

List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395 -2396

Introduction to Hexoses

• Play vital roles in biological process - signal transduction, cognition, immune response• Synthetically challengeable to chemistry - 4 stereocenters with 5 similar hydroxyl groups

Common Methods toward Sugars

• Sharpless’s reiterative two-carbon extension cycle - Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed , L. A.; Sharpless, K. B. Science 1983, 220, 949

- Takeuchi, M; Taniguchi, T; Ogasawara, K. Synthesis 1999, 1999, 341

• Hetero-Diels-Alder reactions - Danishefsky, S. J.; Maring, C. J. J. Am. Chem. Soc. 1985, 107, 7761

- Boger, D. L.; Robarge, K. D. J. Org. Chem. 1988, 53, 5793

- Tietze, L. F.; Montenbruck, A.; Schneider, C. Synlett. 1994, 1994, 509

- Bataille, C. et al., J. Org. Chem. 2002, 67, 8054

• Iterative syn-Glycolate aldol strategy - Davies, S. G.; Nicholson, R. L.; Smith, A. D. Synlett. 2002, 2002, 1637

Sharpless’s Two-carbon Extension Cycle: the Idea

Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed , L. A.; Sharpless, K. B. Science 1983, 220, 949

Key step: Sharpless asymmetric epoxidation

Completion of the 1st Cycle

R1

S R2

O

R1

S R2

O Ac2O

R1

S R2

OAc

H

AcO R1S R2 AcO

R1S R2

OAc

AcO

OH

OHPh Ph

O

SPh

BhO

OH

OH

H

HO

O

O

Ph

Ph

NaOH

OH

BhOO

OH

OBhH

OBh

O

OBh

OH

NaBH4

LAH / AlCl3 [ O ]

L - DET

Ti ( O - i - Pr )4

1) PhSH

1 : 4

83 % 56 %

92 % yield

> 90 % ee

HOMe

OMe

SPh

OBh

O

O

CH3CO2

OBh

O

O

OAc

SPhO

OCHO

OBn4

71 %

1) mCPBA

2) (CH3CO)2O

DIBAL - H

- 78 o C

84 %

O

OCHO

OBn593 %

1

2

3

Ph3P

H

O

H

HO

O

O

OBh

1)

2) NaBH4 88 %

E / Z = 20 : 1

Ph3P

H

O

H

HO

O

OBh

1)

2) NaBH491 %

E / Z = 20 : 1

O

6

7

Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed , L. A.; Sharpless, K. B. Science 1983, 220, 949

Pummerer rearrangement

Completion of the 2nd Cycle to 8 Hexoses6 7

Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed , L. A.; Sharpless, K. B. Science 1983, 220, 949

Modifications to Sharpless’s Strategy

Takeuchi, M; Taniguchi, T; Ogasawara, K. Synthesis 1999, 1999, 341

C

O

HCO CHO

HCO CH

ORAD-Mix reagent

HCO CH

!

!OR

OH

OH

1) oxidative ring-expansion

2) acid cyclization

O

C

H

HPO

O

Hexoses

24

25

HCO CH

!

!OTBS

OH

OH

24

mCPBA

CHO

O

CH OTBS

OH

HO

pTsOH C

O

O

C

H

HTBSO

O

25

69% from 24

The key step:

Boger’s Hetero-Diels-Alder Reactions toward Hexoses

Boger, D. L.; Robarge, K. D. J. Org. Chem. 1988, 53, 5793

Other Hetero-Diels-Alder Reactions toward Hexoses

OMe

HO O

OH

BOMO

O H

MeO OBzOTBDMS

Ce(OAc)3-BF3.OEt2

-78oC

OMe

HO O

OH

BOMOO

OBzO

HO OH

OH

HOO

OAcNHAc

OAc

N

NH

O

OO

O

OHNH

OH

OH

Ac

Tunicamycins

35 36 37

45% conversion, single isomer

29

BzlO

O

O

N O

O

Al

AcO

OEt

-35oC

DCM

OEtO

AcO

OBzl

COX

97% endo/ exo: >50:1

OEtO

HO

OH

OH

OHand

OEtO

HO

OH

OH

OH

2627 28 30

Danishefsky, S. J.; Maring, C. J. J. Am. Chem. Soc. 1985, 107, 7761

Tietze, L. F.; Montenbruck, A.; Schneider, C. Synlett. 1994, 1994, 509

Bataille, C. et al., J. Org. Chem. 2002, 67, 8054

50oC

12kbar OEtOOC

RO

OMe

40-69% endo/ exo: >99:1

OMeH

EtOOC O

(D, L)-mannose

Oxidation Deprotection Reduction

3132 33 34

OR

O OMe

OH

OH

HO

HO

Iterative syn-Glycolate Aldol Strategy

Davies, S. G.; Nicholson, R. L.; Smith, A. D. Synlett. 2002, 2002, 1637

O N

O O

ORR

O N

O O

ORR

OR

OP

H

O

OR OR

OP

O N

O O

ORR

OH

OR

OR

OP

O

HO

OH

OH

OHHO

1) Glycolate Aldol

2) Protect

DIBAL-H

Cleavage

Iterative Glycolate Aldol

Cleavage

Deprotection

38 39

40

4142

O N

O O

OBnBn

O N

O O

OBnBn

OBn

OR

Et2BOTf, iPr2NEt

BnOCH2CHO

THF, -78oC73%, 94% d.e.

R= H

R=TBDMS90%

1) DIBAL, DCM

2) K2CO3, MeOH, H2O

H

O

OBn OBn

OTBDMS

O N

O O

OBnBn

54%

Et2BOTf

iPr2NEt

THF, -78oC

O N

O O

OBnBn

OH

OBn

OBn

OTBDMS

TBAF

HOAc, THF

O

BnO

OH

OBn

OBnO

63%, >95% d.e.

1) DIBALH, DCM

2) H2, Pd/C EtOAc, EtOH

O

HO

OH

OH

OHHO

98%65%

43 44

45

464748

Disadvantages and Advantages of the Old Methods

Disadvantages:• Require protection-group manipulations• Need for iterative oxidation-state adjustment• Long synthetic pathways

Advantages:• Hexoses can be independently derivatized• Hydroxyl groups of hexoses are protected• Hydroxyl groups of hexoses are chemically discriminated• Ready to couple with other sugars to produce polysaccharides and

other derivatives

Can hexoses be synthesized more efficiently by such de novo methods?

The Idea: L-Proline Catalyzed Cross Aldol Reactions

• Both steps are not practically proved• Product of step 1 must be inert to further aldol

Northrup, A. B.; M acMillan, D. W. C. Science 2004, 305, 1752

First Proline-catalyzed Direct Asymmetric Aldol Reactions- Breakthrough

• Not require the pregeneration of enolates or enolate equivalents• Stereoselectivity is usually good• Nucleophilic partners are acetone and a-hydroxyl acetone• Stereoselectivity is substrate-sensitive with a-brached alkyl aldehydes

give better e.e.s.

O+

H R

O

R

O OH30mol%L-Proline

DMSO

22-94% yield36-77% ee

R= Ar, !"unbrached Alkyl

O+

H R

O

R

O OH30mol%L-Proline

DMSO

63-97% yield84-99% ee

R= !"brached Alkyl

O+

H R

O

R

O OH30mol%L-Proline

DMSO

OH OH

38-95% yield67-99% ee1.5:1- 20:1 dr

List, B. Tetrahedron 2002, 58, 5573List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395 -2396

Features of Proline as Catalyst

NH O

OH

O

N

R2

O

ON

R2

R1 H

OH

ON

R2

R2

O

H

O

H

O

H2O

R1 R1

R2

O

NH

O

OH

Lewis base

Bronst acid

rigidity back bones

H2ONucleophilicattack

Dehydration

Deprotonation

Hydrolysis

O H

N

HR1

R2

H

R3O

O

R1

HO H

N

HR1

R2

H

R3O

O

R3 H

O

OH

R3

R1

47

48

49

50

51

1) Bifunctional catalyst with increase lewis basicity and rigid back bones2) Nontoxic, inexpensive, readily available in both enantiomeric forms3) No prior modification of carbonyls4) Water soluble5) No metal required

M

N

OO

52

H

H

Open book structure

List, B. Tetrahedron 2002, 58, 5573List, B. ; Lerner, R. A. and Barbas III, C. F. J. Am. Chem. Soc., 2002, 122, 2395 -2396

Direct Enantioselective Cross-Aldol of Aldehydes— Elusive Transformations

• Nonequivalent aldehydes must selectively partition into two discretecomponents - nucleophilic donor and electrophilic acceptor

• The propensity of aldehydes to polymerize

Northrup, A. B. and M acMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798 - 6799

H

O

X

+ H

O

Y

enantioselective

catalyst

H!

!O

X

OH

X

H!

!O

X

OH

Y

H!

!O

Y

OH

Y

H!

!O

Y

OH

X

aldehydePolymer

Can proline be used for direct enantioselective cross-aldol reaction of aldehydes?

NH O

OH

H

O2 + 10mol% catalyst

DMF, 4oCH

O OH

80% yield, 4:1 anti: syn, 99%ee53 54

First Proline-catalyzed Direct Asymmetric Cross-AldolReactions of Aldehydes

a) Good yields with excellent eesb) Tolerate a large range of substratesc) Aldehyde donors must be added slowlyd) Lower catalyst loadings and shorter reaction time compared with ketone substratese) Scalable

Northrup, A. B. and M acMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798 - 6799

For sugar synthesis: a-oxyaldehydes as substrates:

N

O

O

H

O+

H

O

OX

OH

OX

HH

O

OX

OXOX

55 56 57

H

O

OYO OH

OX

OYXO

58

aldol 1aldol 2

OX

Step 1 toward Sugar: Direct Asymmetric Aldol Reactions ofOxyaldehydes

1) Greatly affected by electronic nature of oxyaldehydes2) Bulky aldehydes with a-silyloxy

group can work3) Products are protected forms of naturally occurring sugar erythrose4) Products are nonreactive in aldol union

Northrup, A. B.; M angion, I. K.; Hettche, F.; M acMillan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152

Direct Asymmetric Aldol Reactions of Oxyaldehydes withAlkyl Aldehydes

Glycoaldehydes: 1) Electrophile when a-methylene

exists 2) Nuceophile when carbonyl is next to a-methine group

Northrup, A. B.; M angion, I. K.; Hettche, F.; M acMillan, D. W. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 2152

Step 2 toward Sugar: Metal Catalyzed Carbohydrate Construction

Northrup, A. B.; M acMillan, D. W. C. Science 2004, 305, 1752

Effects of solvent and LA

H

O

OX

OH

OX

59

H

O

OY

O OH

OX

OYXO

60

aldol 2

OX

TMSLA

+

Structural Variation: A Lot Sugars!

1) Quick construct polysaccharides

2) Broad diversification of subs. at C4 & C6 of sugars3) Unnatural sugar synthesis with heteroatoms

Northrup, A. B.; M acMillan, D. W. C. Science 2004, 305, 1752

H

O

OX

OH

OX

59

H

O

OY

O OH

OX

OYXO

60

aldol 2

OX

TMSLA

+

A Little Extension: Enzyme Catalyzed Aldol Reaction-Aldolase I and Aldolase II

Hoffmann, T.; Barbas III, C. F. et al J. Am Chem. Soc. 1998, 120, 2768

1) Aldolase I utilize an enamine based mechanism2) Aldolase II uses zinc cofactor3) How Aldolase I works?

A Little Extension: Proline, An Aldolase I mimics

Movassaghi, M.; Jacobsen, E. N. Science 2002, 298, 1904

NH O

OH

O

N

R2

O

ON

R2R1 H

OH

ON

R2

R2

O

H

O

H

O

H2O

R1 R1

R2

O

H2ONucleophilicattack

Dehydration

Deprotonation

Hydrolysis

O H

N

HR1

R2

H

R3O

O

R1

HO H

N

HR1

R2

H

R3O

O

R3 H

O

OH

R3

R1

47

48

49

50

51

Proline, the simplest enzyme —E. N. Jacobsen

Proline- A Universal Enzyme?

NH

O

OH

O

N

R2

O

ON

R2

R1 H

OH

ON

R2

R1

O

ON

R2R1 E*

R2

O

H

O

H

O

E+

H2O

R1 R1

!R2

O

R1

E

H2ONucleophilicattack

Dehydration

Deprotonation

Electrophilicattack

Hydrolysis

E+=R3 R4

O

R3 R4

NHR

EWGR3

PhN

O

R2

!

O

R1

OH

R4R3

R2

!

O

R1

NHR

R4R3

R2

!

O

R1

EWG

R3

R2

! O

O

R1

NH

Ph

L-Proline

Aldol reaction

Manich reaction

Michael addtion

"-Aminoxylation reaction

And More....

List, B. Tetrahedron 2002, 58, 5573Merino, P.; Tejero, T. Angew. Chem. Int. Ed. Engl. 2004, 43, 2995

Summary

The strategy for the synthesis of differentially protected hexoses provides rapid enantioselective access to key building blocks in saccharide and polysaccharide synthesis. The approach efficiently yields isotopic and functional variants of the hexoses that have not been readily accessible for pharmaceutical study. Proline is a bifunctional catalyst that is efficient for many transformations

top related