ashraf pbd seminarcivil808.com/sites/default/files/publication/ashraf pbd seminar.pdf · calculate...

Post on 22-Sep-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Nonlinear Analysis & Performance Based Design

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

CALCULATED vs MEASURED

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ENERGY DISSIPATION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

IMPLICIT NONLINEAR BEHAVIOR

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STEEL STRESS STRAIN RELATIONSHIPS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

INELASTIC WORK DONE!

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

CAPACITY DESIGN

STRONG COLUMNS & WEAK BEAMS IN FRAMESREDUCED BEAM SECTIONS

LINK BEAMS IN ECCENTRICALLY BRACED FRAMESBUCKLING RESISTANT BRACES AS FUSES

RUBBER-LEAD BASE ISOLATORSHINGED BRIDGE COLUMNS

HINGES AT THE BASE LEVEL OF SHEAR WALLS ROCKING FOUNDATIONS

OVERDESIGNED COUPLING BEAMSOTHER SACRIFICIAL ELEMENTS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STRUCTURAL COMPONENTS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

MOMENT ROTATION RELATIONSHIP

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

IDEALIZED MOMENT ROTATION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

PERFORMANCE LEVELS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

IDEALIZED FORCE DEFORMATION CURVE

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design 17

ASCE 41 BEAM MODEL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

• Linear Static Analysis• Linear Dynamic Analysis

(Response Spectrum or Time History Analysis)

• Nonlinear Static Analysis(Pushover Analysis)

• Nonlinear Dynamic Time History Analysis(NDI or FNA)

ASCE 41 ASSESSMENT OPTIONS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ELASTIC STRENGTH DESIGN ‐ KEY STEPS

CHOSE DESIGN CODE AND EARTHQUAKE LOADSDESIGN CHECK PARAMETERS STRESS/BEAM MOMENTGET ALLOWABLE STRESSES/ULTIMATE– PHI FACTORSCALCULATE STRESSES – LOAD FACTORS (ST RS TH)

CALCULATE STRESS RATIOS

INELASTIC DEFORMATION BASED DESIGN ‐‐ KEY STEPS

CHOSE PERFORMANCE LEVEL AND DESIGN LOADS – ASCE 41DEMAND CAPACITY MEASURES – DRIFT/HINGE ROTATION/SHEAR

GET DEFORMATION AND FORCE CAPACITIESCALCULATE DEFORMATION AND FORCE DEMANDS (RS OR TH)

CALCULATE D/C RATIOS – LIMIT STATES

STRENGTH vs DEFORMATION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STRUCTURE and MEMBERS

• For a structure, F = load, D = deflection.• For a component, F depends on the component type, D is the 

corresponding deformation.• The component F‐D relationships must be known. • The structure F‐D relationship is obtained by structural analysis.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

FRAME COMPONENTS

• For each component type we need :Reasonably accurate nonlinear F‐D relationships.Reasonable deformation and/or strength capacities.

• We must choose realistic demand‐capacity measures, and it must be feasible to calculate the demand values. 

• The best model is the simplest model that will do the job.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

Force (F)

Initiallylinear

StrainHardening

Ultimatestrength

Strength lossResidual strength

Complete failure

First yield

Ductile limit

Hysteresis loop

Stiffness, strength and ductile limit mayall degrade under cyclic deformation

Deformation (D)

F-D RELATIONSHIP

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

LATERALLOAD

Partially DuctileBrittle Ductile

DRIFT

DUCTILITY

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ASCE 41 - DUCTILE AND BRITTLE

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

FORCE AND DEFORMATION CONTROL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

F

Relationship allowingfor cyclic deformation

Monotonic F-D relationship

Hysteresis loopsfrom experiment.

D

BACKBONE CURVE

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

HYSTERESIS LOOP MODELS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STRENGTH DEGRADATION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ASCE 41 DEFORMATION CAPACITIES

• This can be used for components of all types.• It can be used if experimental results are available.• ASCE 41 gives capacities for many different components. • For beams and columns, ASCE 41 gives capacities only for the chord 

rotation model.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

θi θj

Current θ

Elastic θPlastic (hinge) θ

Totalrotation

Zero length hinges

Elastic beam

Plasticrotation

Elasticrotation

Similar atthis end

Mi Mj

M or Mi j

M

θ θi j or

θ

BEAM END ROTATION MODEL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

PLASTIC HINGE MODEL

• It is assumed that all inelastic deformation is concentrated in zero‐length plastic hinges.

• The deformation measure for D/C is hinge rotation.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

PLASTIC ZONE MODEL

• The inelastic behavior occurs in finite length plastic zones.• Actual plastic zones usually change length, but models that have 

variable lengths are too complex.• The deformation measure for D/C can be :

‐ Average curvature in plastic zone.‐ Rotation over plastic zone ( = average curvature  x   plastic  zone length).

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ASCE 41 CHORD ROTATION CAPACITIES

IO LS CPSteel Beam θp/θy = 1 θp/θy = 6 θp/θy = 8

RC BeamLow shearHigh shear

θp = 0.01θp = 0.005

θp = 0.02θp = 0.01

θp = 0.025θp = 0.02

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

COLUMN AXIAL‐BENDING MODEL

Mi

P

PP

P

or

V

V

Mj

MM

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STEEL COLUMN AXIAL‐BENDING

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

CONCRETE COLUMN AXIAL‐BENDING

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

NodeZero-lengthshear "hinge"Elastic beam

SHEAR HINGE MODEL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

PANEL ZONE ELEMENT

• Deformation, D = spring rotation = shear strain in panel zone.• Force, F = moment in spring = moment transferred from beam to 

column elements. • Also, F = (panel zone horizontal shear force) x (beam depth).

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

BUCKLING-RESTRAINED BRACE

The BRB element includes “isotropic” hardening.The D‐C measure is axial deformation.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

BEAM/COLUMN FIBER MODEL

The cross section is represented by a number of uni‐axial fibers.The M‐ψ relationship follows from the fiber properties, areas and locations. Stress‐strain relationships reflect the effects of confinement   

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

Steelfibers

σ

σ

ε

εConcrete

fibers

WALL FIBER MODEL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ALTERNATIVE MEASURE - STRAIN

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

∆ƒ

ƒ

∆ u u

1 2iteration

NEWTON – RAPHSONITERATION

∆ƒ

ƒ

∆ u u

1 2

iteration

CONSTANT STIFFNESSITERATION

3 4 56

NONLINEAR SOLUTION SCHEMES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

Y

+Y

-Y

0 Radius, R

θ

CIRCULAR FREQUENCY

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

u.

t

ut1.

..

Slope = ut1..

t1

u

t1 t

Slope = ut1.

u

ut1..

t1 t

THE D, V & A RELATIONSHIP

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

UNDAMPED FREE VIBRATION

)cos(0 tuut ω=

0=+ ukum &&

mkwhere =ω

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

RESPONSE MAXIMA

ut )cos(0 tu ω=

)cos(02 tu ωω−=ut&&

)sin(0 tu ωω−=ut&

max2uω−=maxu&&

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

BASIC DYNAMICS WITH DAMPING

guuuu &&&&& −=ω+ωξ+ 22guMKuuCuM

KuuCtuM

&&&&&

&&&

−=++

=++ 0

gu&&

M

K

C

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ug..

2ug2..

ug1..

1

t1 t2

Time t

&&A Bt ug= + = −&& &u u u+ +2 2ξω ω

RESPONSE FROM GROUND MOTION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

{ [& ] cos

[ (& )] sin }

e u B t

A u u B t B

tt d

dt t d

&ut = −

+ − − + +

−ξω

ωω

ωω ξω

ωω

ω

1 2

21 1 2 2

1

e A B t

u u A B t

A B Bt

tt d

dt t d

ut = − +

+ + − +−

+ − +

−ξω

ω

ξ

ωω

ωξω

ξω

ξ

ωω

ω

ξ

ω ω

{ [u ] cos

[& ( )] sin }

[ ]

1 2 3

1 1

2

2

2 3 2

2

1 2 1

2

DAMPED RESPONSE

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

SDOF DAMPED RESPONSE

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

RESPONSE SPECTRUM GENERATION

-0.40

-0.20

0.00

0.20

0.40

0.00 1.00 2.00 3.00 4.00 5.00 6.00TIME, SECONDS

GR

OU

ND

AC

C, g

Earthquake Record

Displacement Response Spectrum

5% damping

-4.00-2.000.002.004.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

DIS

PL,

in.

-8.00-4.000.004.008.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

DIS

PL,

in.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10PERIOD, Seconds

DIS

PLA

CEM

ENT,

inch

es

T= 0.6 sec

T= 2.0 sec

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

0

4

8

12

16

0 2 4 6 8 10

PERIOD, sec

DIS

PLA

CE

ME

NT,

in.

0

10

20

30

40

0 2 4 6 8 10

PERIOD, sec

VE

LOC

ITY,

in/s

ec

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10

PERIOD, sec

AC

CE

LER

ATIO

N, g

dV SPS ω=va PSPS ω=

SPECTRAL PARAMETERS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

THE ADRS SPECTRUM

ADRS Curve

Spectral Displacement, Sd

Spectral Acceleration, Sa

Period, T

Spectral Acceleration, Sa RS Curve

0.5 Second

s

1.0 Second

s

2.0 Second

s

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

THE ADRS SPECTRUM

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ASCE 7 RESPONSE SPECTRUM

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

PUSHOVER

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

THE LINEAR PUSHOVER

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

EQUIVALENT LINEARIZATION

How far to push? The Target Point!

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

DISPLACEMENT MODIFICATION

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

Calculating the Target Displacement

DISPLACEMENT MODIFICATION

C0  Relates spectral to roof displacementC1 Modifier for inelastic displacementC2 Modifier for hysteresis loop shape

δ = C0C1C2SaTe2 / (4π2)

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

LOAD CONTROL AND DISPLACEMENT CONTROL

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

P-DELTA ANALYSIS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

P-DELTA DEGRADES STRENGTH

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

STRUCTURESTRENGTH

The "over-ductility" is reduced,and is more uncertain.

P- effects may reduce the drift at which the"worst" component reaches its ductile limit.

Δ

P- effects will reduce the drift atwhich the structure loses strength.

Δ

DRIFT

P-DELTA EFFECTS ON F-D CURVES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

THE FAST NONLINEAR ANALYSIS METHOD (FNA)

NON LINEAR FRAME AND SHEAR WALL HINGESBASE ISOLATORS (RUBBER & FRICTION)

STRUCTURAL DAMPERSSTRUCTURAL UPLIFT

STRUCTURAL POUNDINGBUCKLING RESTRAINED BRACES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

RITZ VECTORS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

FNA KEY POINT

The Ritz modes generated by the nonlinear deformation loads are used to modify the basic structural modes whenever the nonlinear elements go nonlinear.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

CREATING HISTORIES TO MATCH A SPECTRUM

FREQUENCY CONTENTS OF EARTHQUAKES

FOURIER TRANSFORMS

ARTIFICIAL EARTHQUAKES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

ARTIFICIAL EARTHQUAKES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design71

MESH REFINEMENT

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design72

This is for a coupling beam. A slender pier is similar.

APPROXIMATING BENDING BEHAVIOR

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design73

ACCURACY OF MESH REFINEMENT

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design74

PIER / SPANDREL MODELS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design75

STRAIN & ROTATION MEASURES

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design76

Compare calculated strains and rotations for the 3 cases.

STRAIN CONCENTRATION STUDY

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design77

The strain over the story height is insensitive to the number of elements. Also, the rotation over the story height is insensitive to the number of elements. 

Therefore these are good choices for D/C measures.

No. of elems

Roof drift

Strain in bottom element

Strain over story height

Rotation over story height

1 2.32% 2.39% 2.39% 1.99%

2 2.32% 3.66% 2.36% 1.97%

3 2.32% 4.17% 2.35% 1.96%

STRAIN CONCENTRATION STUDY

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

DISCONTINUOUS SHEAR WALLS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design79

PIER AND SPANDREL FIBER MODELS

Vertical and horizontal fiber models

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design 80

RAYLEIGH DAMPING

• The αM dampers connect the masses to the ground. They exert external damping forces. Units of α are 1/T.

• The βK dampers act in parallel with the elements. They exert internal damping forces. Units of β are T.

• The damping matrix is C = αM + βK.

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design 81

• For linear analysis, the coefficients α and β can be chosen to give essentially constant damping over a range of mode periods, as shown.

• A possible method is as follows :Choose TB = 0.9 times the first mode period.Choose TA = 0.2 times the first mode period.Calculate α and β to give 5% damping at these two values.

• The damping ratio is essentially constant in the first few modes.• The damping  ratio is higher for the higher modes.

RAYLEIGH DAMPING

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

KuuC &tuM && =++ 0

Kuu& ++ = 0(α M + β K )

u&& + CM

u&M

u+ K = 02uu& =ω+ωξ+ 2 0 ωξ2 M = C

ω2ξ = α + βω2

ω2ξ = CM 2

= CM

MK =

2C

MK 2 MKα M + β K=

tuM &&

u&& ;

2 MK

RAYLEIGH DAMPING

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

Higher Modes (high ω) = βLower Modes (low ω) = α

To get ζ from α & β for any  ω MK=

To get α & β from two values of  ζ1& ζ

2

; Τ 2πω=

ζ1

= α2ω

1

+ β ω12

ζ2

= α2ω

2

+ β ω22

Solve for α & β

RAYLEIGH DAMPING

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

DAMPING COEFFICIENT FROM HYSTERESIS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

DAMPING COEFFICIENT FROM HYSTERESIS

www.Civil808.comwww.Civil808.com

Nonlinear Analysis & Performance Based Design

A BIG THANK YOU!!!

www.Civil808.comwww.Civil808.com

top related