anomalous avv* amplitude in soft-wall ads /qcd

Post on 24-Feb-2016

42 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Anomalous AVV* amplitude in soft-wall AdS /QCD. J.J. Sanz -Cillero ( Bari - INFN ) P. Colangelo , F. De Fazio, F. Giannuzzi , S. Nicotri , J.J. SC [PRD 85 (2012) 035013] Ongoing work with F. Zuo. QNP’12, April 19 th 2012. Outline :. VVA vertex in QCD - PowerPoint PPT Presentation

TRANSCRIPT

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

Anomalous AVV* amplitude

in soft-wall AdS/QCD

J.J. Sanz-Cillero ( Bari - INFN)P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, J.J. SC [PRD 85 (2012) 035013]

Ongoing work with F. Zuo

QNP’12, April 19th 2012

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

• VVA vertex in QCD

• Holographic model and Chern-Simons term

• Longitudinal and transverse GF:

• LR and VVA correlators: Son-Yamamoto relation [arXiv:1010.0718 [hep-ph] ]

Outline:

VVA Green's function in AdS/QCD J. J. Sanz Cillero

VVA Green’s function in QCD

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•This work is focused on the GF,

•In the soft photon limit k0, provided by the relation

in terms of the VVA correlator

•The GF is decomposed in T and L Lorentz structures

with ,

JA JV

JA JV

g

JEM

k0

q q

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•High-energy OPE for mq=0

•High-energy OPE for mq≠0

with the magnetic susceptibility c:

[ Vainshtein ‘03 ]

[ Vainshtein ‘03 ]

VVA Green's function in AdS/QCD J. J. Sanz Cillero

AdS/QCD:

Yang-Mills + Chern-Simons

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Setup: gauge chiral symmetry

Dilaton

AdS Metric

•The YM action provides the propagator and 2-point GFs:

- cSB through the v.e.v. v(z)

- Phase-shift p induced by the axial source A0||(x)m

Dual operators

[ Karch et al. ‘06 ]

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Equations of Motion:

•Vector EoM Analytically solvable

A5=V5=0

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Scalar v.e.v. - Explicit breaking: mq

- Spontaneous breaking: s

[ UV behaviour / short-distance (y0) ]

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Contribution to AgV (soft kg0)

with group factor

•Chern-Simons action Chiral anomaly

- Chern-Simons term

with

- Invariant under Vector transf. up to a boundary term (which is removed)

(relevant part for AVV)

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

• This produces the AdS prediction

with fixed by for mq=0

•All that remains Extract the B-to-b propagators V, A , A||

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

VVA in AdS/QCD

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•All EoM can be analytically solved (v(y)=0) :

In agreemente with exact QCD with mq=0 and no ScSB

[ just massless pQCD ]

We used this to fix kCS

VVA Green's function in AdS/QCD J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•At Q2∞ one has the OPE

The OPE requires the presence of a logarithmc ln(Q2/mq2) at O(1/Q4)

Impossible if the UV-b.c. for p is just a constant

?

VVA Green's function in AdS/QCD J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•The Parallel component can be still analytically solved:

•The perp. component [expansion in 1/Q2 ]

•PROBLEM: OPE at high-energies

Our model produces c=0

?

VVA Green's function in AdS/QCD J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•The Parallel component exp. in 1/Q2

•The perp. Component [expansion in 1/Q2 ]

?

?

•ISSUES with the OPE:

mqs term: no susceptibility, c=0 !!

mq2 term: wL: If p(Q2,0) Impossible to recover

simply a constant the lnQ2 terms

wT: Impossible to recover the lnQ2 terms

VVA Green's function in AdS/QCD J. J. Sanz Cillero

LR-correlator and wT,L (mq=0)

:

Son-Yamamoto relation

VVA Green's function in AdS/QCD J. J. Sanz Cillero

•Son-Yamamoto proposed the relation [ 2010 ]

cSB through IR BC’s

[Hirn,Sanz ‘05]

cSB through v(y)

[Sakai,Sugimoto ’04, ‘05]

[Son,Stephanov ‘04]

[Karch et al. ‘06]

[Colangelo et al. ‘08]

?

MHA with r + a1 [Knecht,De Rafael ‘98]

[Knecht,De Rafael ‘98]

VVA Green's function in AdS/QCD J. J. Sanz Cillero

Summary and

conclusions

VVA Green's function in AdS/QCD J. J. Sanz Cillero

•For mq=0 one has p = A|| = 1 [ topological quantity ]

Not determined by EoMs but by b.c.

•Problems for mq=0 in wT : c=0 !!

More ingredients needed?

•Problems for mq≠0 :

•SY relation (at large NC) :

• No 5D-field dual to qsabq• No transition qsabq g• Need for the dual field Bab ? [ Gorsky et al. ‘12 ]

• p(Q,0) ?• c=0 again from mqs !!

• Are mq corrections understood?

Study of PAA||

• Issues in AdS for Q2∞

• BUT it seems to work at Q20

• Maybe ‘cause the MHA already does well

[ Knecht et al. ‘11 ] [Kampf ‘11 ]

[ Cappielo et al. ‘10 ]

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

BACKUP

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Scalar v.e.v. chiral symmetry breaking

-Explicit breaking:

-Spontaneous breaking:

•However, in the simplest model [ Colangelo et al. ’08 ]

C1 and C2 related (unlike QCD) Supossedly solvable by adding a potential V(|X|)

•We will assume the v.e.v. profile (regardless of its origin)

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•Scalar v.e.v. chiral symmetry breaking

-Explicit breaking:

-Spontaneous breaking:

•We will assume the v.e.v. profile (regardless of its origin)

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•For our scalar v.e.v.

v(y)= mq y/c

Notice the relevance of the UV value of the p field !!

•At Q2∞ one has the OPE

The OPE requires the presence of a logarithmc ln(Q2/mq2) at O(1/Q4)

Impossible if the UV-b.c. for p is just a constant

?

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

Phenomenology (mq=0)

Anomalous AV*V amplitude in soft-wall models

J. J. Sanz Cillero

•For Q20 the EoM can be analytically solved for v(y) = sy3/c3

Experiment[ PDG ’10 ]

This work[ Colangelo et al. ‘11]

92.2

8.3 ±1.3 6.3

86.5

•For Q2∞ perturbatively solved for g5v(y) = Sy3 + O(y4)

Experiment[ Prades et al. ’10 ]

This work[ Colangelo et al. ‘11]

-2.2 ±0.4 - 4.0 [ Prades et al. ’10 ]

-3.9 ± 1.0 [ Friot et al. ’04 ]

INPUTS:

NOT a fit !!!

top related