an assessment of the combined variable approach: 2...combined variable (cv) approach for any general...

Post on 20-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

An Assessment of the Combined Variable Approach: 2.0

Yuri Lawryshyn

IUVA Americas Conference, February, 2018

Objective• Main objective: to test the validity of the combined variable (CV) approach for any general case– Specifically: with all of the checks and balances of the proposed approach, can we find a case where a UV reactor passes all QA/QC criteria yet fails in a some potential real world application?

Approach of the Presentation• Theory

– Does the CV have any theoretical basis?• Numerical experiments to see if we can “break” the proposed validation methodology utilizing all proposed QA/QC– Theoretical “good” and “bad” reactors– CFD based “good” and “bad” reactors– Theoretical reactor where particle trajectories change with flow rate

– Bioassay uncertainty

Agenda• Summary of the proposed validation methodology

• Theory of the CV• Methodology• Results• Conclusions

– Proposed methodology (likely) has all of the required checks and balances to ensure appropriate application of the CV approach

Combined Variable Equation

Summary of Validation Methodology

• Bioassay test– Two different microorganisms

• E.g. T1 ( ~5mJ/cm ) and MS2 ( ~20mJ/cm ) 

– UVT range– Flow range– UVC power range (measure  )

Summary of Validation Methodology• Analysis

– Use T1 data to fit parameters in the CV equation to predict MS2  within appropriate range (CV and 

)– Use MS2 data to fit parameters in the CV equation to predict T1  within appropriate range (CV and 

)– Use all data to fit parameters in the CV equation

• QA/QC for each of the above check plots for fit / issues:– as a function of CV for different UVTs– Actual  as a function of Predicted 

Summary of Validation Methodology

• Validated range based on bioassay test range of:– Flow rate– UVT– Combined variable–

Theory: Reactor Performance• Inactivation of the i‐th path:

• UV reactor performance:1

• UV system log inactivation

1

Theory: Reactor Performance• Note that

, ,

• If particle trajectories do not change with flow rate then

• where

• and the average normalized intensity per path is

1, ,

Theory: Combined Variable• Combined variable relationship

/

Theory: Combined Variable• Reactor performance

/

= · ·

• Combined variable equation

Methodology• Numerical experiments

– Good and bad theoretical reactors– Good and bad CFD modeled UV reactors– Good and bad theoretical reactors where variance of particle trajectories varies with flow rate

• utilize geometric Brownian motion (GBM) from stock modeling theory

– Bioassay uncertainty

Methodology• 3 flow rates: 0.25, 0.5, 1.0• 4 UVTs: 80%, 85%, 90%, 95%• 3 power levels: 40%, 70%, 100%• Leads to 36 bioassay tests

– Remove any points where:• 0.25• 6

• Test (all errors reported on absolute LogI):– CV vs LogI: T1 and MS2– T1 to predict MS2 and MS2 to predict T1– CV vs LogI: Combined (T1 and MS2)– Combined CV to predict Adenovirus

Methodology – Theoretical ReactorsReactor R1 Reactor R2

Dose path 1 radius 6.6 cm 7.5 cmDose path 1 weight 0.6 0.99Dose path 2 radius 10 cm 15 cmDose path 2 weight 0.4 0.01

Methodology – Theoretical Reactors

Methodology – CFD Reactors

Methodology – Variance ~ Flow

Methodology – Variance ~ Flow

Results• Good theoretical reactor• Bad theoretical reactor• Variance ~ Flow• Good / bad CFD reactor (summarized in table)

Results: Good Theoretical Reactor

Results: Good Theoretical Reactor

Results: Good Theoretical Reactor

Results: Bad Theoretical Reactor

Results: Bad Theoretical Reactor

Results: Bad Theoretical Reactor

Results: Variance ~ Flow 

Results: Variance ~ Flow 

Results: Variance ~ Flow 

Results: Summary Table 

• Limits: R2<0.95, LogI Error > 0.5

Min Max Min Max Min Max Min MaxGood Theoretical 1.00 1.00 ‐0.15 0.18 ‐0.07 0.10 1.00 ‐0.12 0.24 ‐0.02 0.10Bad Theoretical 0.99 0.98 ‐0.37 0.17 ‐0.30 0.20 0.98 ‐0.39 0.33 ‐0.41 0.18Variance ~ Flow 0.92 1.00 0.13 1.50 ‐2.19 0.05 0.93 ‐1.12 1.17 0.00 0.28Good CFD 1.00 1.00 ‐0.05 0.03 ‐0.04 0.02 1.00 ‐0.05 0.04 ‐0.02 0.03Bad CFD 1.00 1.00 ‐0.04 0.03 ‐0.11 0.07 1.00 ‐0.16 0.07 ‐0.19 0.06Good CFD (s=0.125) 1.00 0.99 ‐0.20 0.20 ‐0.30 0.18 0.99 ‐0.27 0.25 ‐0.30 0.23Good CFD (s=0.25) 0.99 0.97 ‐0.38 0.47 ‐0.32 0.30 0.98 ‐0.53 0.57 ‐0.55 0.82Bad CFD (s=0.125) 0.99 0.99 ‐0.09 0.48 ‐0.26 0.18 0.99 ‐0.24 0.40 ‐0.40 0.29Bad CFD (s=0.25) 0.97 0.94 ‐0.31 0.43 ‐0.56 0.33 0.97 ‐0.69 0.47 ‐0.56 0.32

T1 to MS2(LogI Error)

MS2 to T1(LogI Error)

Combined Fit (LogI Error)

Adenovirus Prediction(LogI Error)

T1 (R2)Combined Fit 

(R2)MS2 (R2)

Results: Bad CFD with Uncertainty

Conclusions• CV approach appears viable if applied appropriately• Methodology work for all cases except where particle 

trajectories varied with flow– This is outside the theoretical formulation assumptions– Extrapolation to a more resistant organism still worked

• Recommendations– Extrapolation on flow, CV and UVT should not be considered

– Effect of second order kinetics should be tested (tomorrow)

Questions?

yuri.lawryshyn@utoronto.ca

top related