advancing from a ‘person who grows corn’ to a ‘corn grower’ · a corn grower does the...

Post on 13-Aug-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Advancing from a‘Person Who Grows Corn’ 

to a ‘Corn Grower’

Dave Franzen, PhDProfessor Soil Science

Extension Soil Specialist, NDSU

Growing corn‐

How hard could it be?

Throw some fertilizer onthrow some corn seed in the groundspray some glyphosate on itgo fishingharvest itsell it

Simple

If this is what you do, you are‐

A Person Who Grows Corn!

A corn grower does the following –

‐ Discriminating seed corn purchaser‐ Recognizes the corn planter as theirmost important piece of production equipment

‐ Applies herbicide pre and/or post in a very timely manner

‐ Applies adequate N, P, with attention to K, S and Zn

‐ Uses appropriate site‐specific nutrientmanagement tools and techniques

‐ Harvests to minimize compaction‐ Harvest logistics are appropriate for volume

Seed corn selection‐

‐ Maturity    ‐needs to fit the growing degreeof the region Too early misses yieldToo late misses maturity‐ increasesdrying costs

What traits are necessary?

Is corn borer an issue?

Is corn rootworm an issue?

Herbicide selection?

Drought characteristics?Nitrogen efficiency?

Seed Spacing‐

Nafziger (Illinois) reported that‐

A 2.5 bushel per acre loss from each 1‐inchincrease in standard deviation of seedspacing.

Another study reported a 3.4 bushel per acreimprovement in yield with each 1‐inchdecrease in standard deviation of seed spacing. 

Nafziger, 2002

Seed spacing in 30 inch rows?

36,000 plants per acre?

Length of 30 inch row per acre = 43,560 / 2.5 = 17,424

36,000 plants per acre / 17,424 feet row per acre =5.8 inches between seeds

Planter boxes should be calibrated. Don’t trustnew boxes to be correctly calibrated. 

Fast planter speeds increase seed spacingvariability and decrease yield.

Timing of glyphosate application in corn

Pre yield EONRPreemerge control 222 bu/a 1004 inch weeds 12012 inch weeds 164None >200

Boerboom and Laboski‐ 2006

Current published N recommendation for corn‐

N Rate (pounds N per acre) =Yield Potential (bushels per acre)  X  1.2

less soil test nitrate‐N to 2 foot depthless previous crop credit

Why I dislike the current N recommendationsfor corn‐

Yield Po

tential

N Rate

200

240

Began to accumulate modern corn N ratedata in 2010.

Sites‐ 2010‐ 16 eastern, 2 western‐ 2011‐ 14 eastern‐ western sites lost‐2012‐ 22 eastern – 4 western‐ 2013‐ 15 eastern‐ 4 western

Also‐ 9 sites from southern Manitoba‐ 21 sites from NW Minnesota‐ still accumulating sites from Northern SD

Total of over 100 sites within the past 12 years.

y = ‐0.001x2 + 0.3676x + 129.81R² = 0.0952

0

50

100

150

200

250

300

0 50 100 150 200 250

Corn Yield, b

ushe

ls per acre

N Rate Only, pounds N per acre

North Dakota, NW Minnesota and Southern Manitoba Corn N Rate Trials 2001‐2013N Rate Only vs Yield‐ ALL SITES

y = ‐0.0008x2 + 0.5026x + 89.834R² = 0.1857

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per acre

North Dakota, NW Minnesota and Southern Manitoba N Rate Trials, Total Known Available N vs Corn Yield, 

All Sites 2001‐2013

y = ‐0.0007x2 + 0.4961x + 76.076R² = 0.4993

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

Yield, bushe

ls per acre

Total Known Available N, pounds per acre

Yield vs Total Known Available N, Long‐term No‐till Sites 2010‐2013

y = ‐0.0009x2 + 0.5301x + 91.271R² = 0.1226

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per acre

Total Available N vs Corn Yield, High Clay Soils, North Dakota, NW Minnesota and Southern Manitoba, 

2001‐2013

y = ‐0.0009x2 + 0.5354x + 114.01R² = 0.2199

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per acre

High Clay Sites that Exceeded 160 bushels per acre, North Dakota, NW Minnesota and Southern Manitoba, 

2001‐2013

y = ‐0.0005x2 + 0.3666x + 64.644R² = 0.2991

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds per acre

High Clay Sites Yielding Under 160 bushels per acre, North Dakota, NW Minnesota, and Southern Manitoba, 

2001‐2013

y = ‐0.0008x2 + 0.5023x + 100.76R² = 0.2478

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per acre

North Dakota, NW Minnesota, and Southern Manitoba Medium Textured Conventional Tillage Sites Total Known 

Available N vs Corn Yield

y = ‐0.0009x2 + 0.5029x + 114.43R² = 0.267

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per bushel

Eastern Medium Texture Sites Yielding Greater than 160 bushels per acre Corn, North Dakota, NW Minnesota, 

Southern Manitoba, 2001‐2013

y = ‐0.0002x2 + 0.2498x + 83.064R² = 0.3468

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

Corn Yield, b

ushe

ls per acre

Total Known Available N, pounds N per acre

Medium Textured Sites, North Dakota, NW Minnesota and Southern Manitoba with High Yields Less than 160 

Bushels Per Acre

The “Return to N” model-

Developed by John Sawyer, Iowa Stateand Emerson Nafziger, Illinois(2005, Proc. Ext-Ind Soil Fert. Conf.)

This model is used in several corn-beltstates, including Iowa, Illinois, Wisconsin, Minnesota,Ohio, and Michigan

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

20N3C

30N3C

40N3C

50N3C

60N3C

70N3C

80N3C

90N3C

100N3C

20N4C

30N4C

40N4C

40N4C

50N4C

60N4C

70N4C

80N4C

90N4C

100N4C

20N5C

30N5C

40N5C

50N5C

60N5C

70N5C

80N5C

90N5C

Medium TextureSites- AllReturn to N$3-$8 corn20 cent to $ N

200

300

400

500

600

700

800

900

1000

0 100 200 300 400

20N3C

30N3C

40N3C

50N3C

60N3C

70N3C

80N3C

90N3C

100N3C

20N4C

30N4C

40N4C

40N4C

50N4C

60N4C

70N4C

80N4C

90N4C

100N4C

20N5C

30N5C

40N5C

50N5C

60N5C

70N5C

80N5C

90N5C

High Clay YieldsGreater than 160 bushels per acreMERN $4 corn,40 cent N= 260 lb N per acre

0

100

200

300

400

500

600

700

0 100 200 300 400

20N3C

30N3C

40N3C

50N3C

60N3C

70N3C

80N3C

90N3C

100N3C

20N4C

30N4C

40N4C

40N4C

50N4C

60N4C

70N4C

80N4C

90N4C

100N4C

20N5C

30N5C

40N5C

50N5C

60N5C

70N5C

80N5C

90N5C

High Clay with YieldsLess than 160 bushelsper Acre.MERN $4 cornand 40 cent N~ 260

100

200

300

400

500

600

700

800

900

0 100 200 300 400

Return to

 N, $

 per acre

Total Known Available N, pounds per acre

20N3C

30N3C

40N3C

50N3C

60N3C

70N3C

80N3C

90N3C

100N3C

20N4C

30N4C

40N4C

40N4C

50N4C

60N4C

70N4C

80N4C

90N4C

100N4C

20N5C

30N5C

40N5C

50N5C

60N5C

70N5C

80N5C

90N5C

100N5C

Medium TextureEastern Sites w/NW MN and S MBYields Greater than160 Bushels per AcreMERN $4 corn and40 cent N~ 240 pounds N peracre

High clay soils and at-risk mediumtexture soils have a special need for in-season (side-dress) N application.

Rate is probably not the answer forthese soils- The answer is likely timing.

How do we figure rate at side-dress?

Cumulative N uptake for corn‐ from Iowa State Ext. Spec. Rpt 48, 1986 

Economics of preplant N vs split-applied N

On high-clay soils, it took about 2 Xthe N rate to achieve similar (?) yields asmedium textured soils with better drainage

120 lb N X $0.40/lb N = $ 48/acre.

Cost in yield and return if you ignore a wet spring-50 bu/acre @ $4/bu = $200/acre.

Cost of a 12-row coulter unit for 28% side-dress = $50,000.

Cost of 2nd application $8/acre.

Extra cost of 80 lb N as 28% vs urea- $4

Total cost per acre of side-dress over 1,500acres corn- paying for coulter unit in year 1-$68,000

1,500 acres X 120 lb N X $0.40 = $72,0001,500 acres X $200 lost revenue = $300,000Total cost of not side-dressing = $372,000

Return for side-dressing =

$372,000 - $68,000 = $304,000

Active optical sensors have been identifiedas a tool to increase nitrogen‐use efficiency

Greenseeker (Trimble)

Holland Crop Circle Sensor (Holland Scientific)

Active optical sensors shine their ownlight onto foliage-

Red/Near Infrared ratio (NDVI)is related to two-dimensional foliageground cover.

Red Edge/Near Infrared ration (RE-NDVI)is related to tints of relative greenness

Algorithms will not use sensorreadings by themselves.

We will use a normalization conceptdeveloped by Oklahoma State Univ.during their development of the GreenSeeker

INSEY-In Season Estimate of Yield

INSEY-

Sensor reading / growing degree daysfrom planting date

y = 84.013e650.61xR² = 0.2666

0

50

100

150

200

250

300

0 0.0005 0.001 0.0015 0.002

Corn Yield, b

u/acre

Greenseeker 5‐6 Leaf INSEY

2011‐2012 All Eastern Conventional Till Sites Greenseeker 5‐6 Leaf INSEY vs Corn Yield

y = 66.433e890.67xR² = 0.2316

0

50

100

150

200

250

300

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

Corn Yield, bu/acre

Greenseeker INSEY

2011‐2012 All Eastern Conventional Till Sites Greenseeker 10‐12 Leaf INSEY vs Corn Yield

Use zone sampling to direct the initial N‐rate to field

Example field- 160 acres

Apply about 200 lbN to a small referencearea

When applicator enters the field to apply side‐dress application, thereference area serves as the INSEYthat is the maximum supported byan application, less an INSEY of 5%.

Example field- 160 acres

Reference areapreviously highlyfertilized with N

INSEY

Yiel

d

ReferenceINSEY

Reference Yield

INSEY

Yiel

d

ReferenceINSEY

Reference Yield

INSEY in field

Field Yield estimate

INSEY

Yiel

d

ReferenceINSEY

Reference Yield

INSEY in field

Field Yield estimate

INSEY

Yiel

d

ReferenceINSEY

Reference Yield

INSEY in field

Field Yield estimate

Corn yield difference in pounds peracre.X 1.25 % N in corn graindivided by efficiency factor 0.6= N rate

Example-

Reference yield predicted- 220 bushels

In-field yield estimated- 160 bushels

difference = 60 bushels X 56 lb N/bushel= 3360 poundsX 0.0125 = 42 lb N42 /0.6 efficiency factor = 70 lb Nat that location.

SAMPLINGGRID SAMPLING

Grid sampling uses sufficientlydense sampling to reveal fertilitypatterns.

SAMPLINGZone sampling

Zone sampling assumes that fertilitypatterns exist because of some logical,predicable reason.

Patterns of mobile nutrientstend to be stable between years.

0 40 80 120Nitrate-N lb/A 2 ft.

20 50 80 110

Nitrate-N lb/A 2 ft.

N

1994 1995

Relativeelevation, ft.

20 50 80 110 140

Nitrate-N lb/A 2 ft.

0 -16

-32

Valley City N over topography

Mobile Nutrients Move, But They Tend To Move To The Same Places.

Electrical conductivity

Electrical conductivity, EM-38

Remote imagery

Yield

Corn is a sensitive crop to P. Enjoysmedium or higher soil test P.

2 X 2 was designed for corn

P Placement Corn Yield, bu/a

None 102Starter* 153Deep Band 146Broadcast 166

*Starter and Deep Band, 50 lb P2O5- Brcst 100 lb P2O5

P Placement on initially low testing (3 ppm) soilMinnesota- from Randall, 2006

Corn yield with in-furrow 10-34-0, Carrington, 2007.

Rate Yield

Gal/ac Bu/ac

0 1012 121

4 125

6 150

8 156

10 153

*Conventional tillage*Soil : 124 lb N/acre prior to planting;

5 ppm (L) P (Olsen)

P. Hendrickson

No difference in plant stand among fertilizer rates

From Gelderman, 2009

150

200

250

300

350

400

K, ppm

Valley City, ND soil test K draped over topography

Site/texture S applied, lb/acre0 6

Yield, bu/acreloamy fine sand 166 174*

silty clay loam 184 184loamy fine sand 99 108*Loam 150 161*sandy loam 140 154*silt loam 149 160*

Response of corn at six locations in Minnesota to sulfur (Rehm, 2005).* Response is significant at P > 0.05

Before 2005, S deficiency in Iowa was virtually unknown. A series of experiments in 2005‐2006 showed a consistent response to S in some soils.

In 2007 17 of 20 sites showed a significant response to SIn 2008, 11 of 25 sites showed a significant response to SAverage response to S was 13 bu/acre

When grouped by texture within responsive  sites, heavier soil increase was 15 bu/acre

Sandier soil increase was 28 bu/acre

(Sawyer, 2009)

Site/Texture Yield w/o S Yield w/S

1 / loamy fine sand 123 151

2 / loamy fine sand 154 198

3 / loamy fine sand 88 108

4 / loam 196 204 (NS)

5 / silt loam  118 171

6 / silt loam 129 167

Across all sites 129 167

Iowa S rescue on corn. 40 lb S/acre as gypsum broadcast side‐dress early season after on‐set of deficiency symptoms. Sawyer, 2009.

ANY crop is susceptible to S deficiency if soiland water conditions are favorable‐

Most at risk‐Sandy soils

Low organic matterSignificant rainfall in fall or springHigher landscape positions

Least at riskClay soils

High organic matterDry conditions in fall/springDepressions

Zinc deficiency

99.9% water soluble ZnSO4 on left/ 7& water soluble ZnOS04 on rightFrom Amrani et al., 1997. CSU

Rate of Zn,lb/acre Yield, bu/a

0 820.1 1190.3 1271.0 1353.0 132

9% EDTA is 1 lb Zn per gallon.

Zinc in a low-testing soil in Nebraska (from Rehmand Schmitt, 1997.

Grain harvest logistics‐

Combine‐

Grain cart‐

Trucking‐

On‐farm drying and storage

If you address all of these 

issues, you will be a

Corn Grower !

top related