advanced technologies to reclaim roadways

Post on 25-May-2015

585 Views

Category:

Business

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Advanced Technologies to Reclaim roadways

APWA Annual MeetingTampa, FLApril 5th, 2012

. Contents:.Eurovia Cold recycling technologies;

.Recyflex’s ®, in‐plant processing:

.Formulation specifications

.Production, laying and compaction operations

.Rheological performances

.VLE roadway concept

.Recyvia ®, in‐place (FDR)

.Recyclovia ®, in‐place (CIR)

.Recycled cold treated materials behavior;

.Environmentals analysis;

. Recyflex’s specifications:.Strengthening base layer: AEC 25, AEC 20

.Composite binder 

.Asphalt emulsion

.Cement or lime

.Dense gradation

.Drainage / Frost  protection layer: HD 25

.Composite binder

.High air voids produce by special gradation

..Intermediate layer: AEC 12.5 

..Composite binder and dense gradation

Recyflex AECStrengthening course materials

RECYFLEX AEC : Cold‐in‐plant treated recycled materials by using  composite binder

In‐plant cold retreated material Mineral aggregate using 50 to 100% of recycling material (from existing pavement structure) Asphalt emulsion and cement/ lime treatment Highly improve bearing capacity instead of regular granular material Indirect tensile Resilient Modulus at 10°C > 4 000 MPa Density of 2 100 kg/m³ (air voids of 12‐15%) 

Recyflex AEC Base Material

High drainability material Mineral aggregate using 30 to 50% of recycling material (from existing pavement structure) Low density = Air void insulation, 1 800 kg/m³ Porous material = air voids ± 30%  Asphalt emulsion and cement/lime treatment Frost penetration reduction

Recyflex HD

RECYFLEX AEC 0/20 mm

Production by using portable plant

RECYFLEX AEC 0/20 mm, Thickness application of 100 @ 300 mm

RECYFLEX AEC 0/20 mm, Grading/ Compaction operations

Final aspect during the cure period

Recyflex AEC Protection and Paving

Application of tack coat emulsion

Chipping application

RECYFLEX AEC, A‐20 Mix Rheological performances

Formulation:  40% of Crushed concrete; 40% of Rap 20% of new aggregates screenings Composite binders: Asphalt emulsion + cement 

Physical and Rheologicals Characterization of: Voids and densities; Cohesion built‐up behavior; Rutting resistance; Modulus evolution vs curing time; Effects of Freeze and thaw cycles on the mechanical performances; Tensile stress vs low temperture.     

Proportions established from the rehabilitation existing roadway (optimization of the recycled 

quantities)

Laboratory samples preparation by Vibrocompression method Piston : axial force

Vibration Molds

Gammadensitometer

Diameter = 16 cm , High = 32 cmVoids average 16.5%

Visual Voids analysis with ultraviolets

Crushed ConcreteRAP

Air voids

0

10

20

30

40

50

60

70

80

90

100

0.01 0.10 1.00 10.00 100.00Tamis (mm)

% pas

sant

d-

Physical Characteristics

Rheologicals Characteristics study 2001  French Gyratory compactor

Voids at 10 gyrations = 21.2% 22% Voids at 200 gyrations = 13.0% 15%

Duriez Resistance before immersion = 6.4 Mpa 4Mpa r/R ratio = 0.68         0.55 Duriez voids = 11.7% 13%

Emulsion treated base material (Grave‐Émulsion)

Rheological Characteristics

Rutting test analysis Rutting

Only 0.7% after100 000 cycles at 60°C, Exceptional performance

Material without ruttingdue to the internalaggregates friction and the presence of hydraulic binder   

Rutting test machine

Rutting resistance spec. on HMA < 10% after 30 000 cycles at 60°C

Cohesion Built‐up behavior

0

100

200

300

400

500

600

0 30 60 90 120 150 180 210 240

Temps de conservation (minutes)

Forc

e (N

)

Recyflex AEC

Emulsion mix

Time, min.

Forc

e, k

N

Workability of ± 3 hours

Time

Rheologicals behavior study

Stiffness Modulus analysis

Diametral Sinusoïdal Compression ‐DSC Bresilian test :

Rupture limit establishement = 8800 N DSC strenght at 20% of the rupture limit

DSC testing at 1.00 kN  0.75 kN corresponding of maximale compression of 1750 N

Modulus evolution with CDS

curve at 15°C

900 Mpaor +11,5%

curve at 10°C

4000

5000

6000

7000

8000

9000

0 7 14 21 28 35 42 49 56 63 70 77 84 91

Time from production (days)

Mod

ulus

at 10

Hz

(MPa

)

Effect of the hydraulic binder

Freeze and thaw cycles effects

Diametral Sinusoïdal Compression –DSC

Two types of simulation Short term freeze‐thaw : 2 cycles of 24 hours produced between the 4th and 

52th hours of curing, each cycle corresponding to a:  temperature drop of +5°C to ‐10°C in 12 hours temperature gain of ‐10°C to +5°C in 12 hours

Long term freeze‐thaw : 50 freeze‐thaw cycles after optimun cohesion, each cycle corresponding to a:

Temperature drop of +10°C to ‐20°C in less 3 hours

Temperature gain of ‐20°C to +10°C in less 3 hours

Rheologicals behavior study

Modulus measurements Diametral Sinusoïdal Compression ‐DSC

Freeze‐thaw  at beginning Modulus evolution at 10 Hz

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90Temps depuis fabrication (jours)

- 9.4%

- 23.5%

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90Temps depuis fabrication (jours)

- 11.5%

- 22.8%

Mo

du

lus

at 1

5°c

, MP

a

Mo

du

lus

at 1

0°c

, MP

a

Air curing

Freeze-thaw

Air curing

Freeze-thaw

Time, hours Time, hours

Effect freeze‐thaw cycles, short term

Modulus measurements

Diametral Sinusoïdal Compression –DSC

Short term freeze‐thaw during beginning of curing Freeze‐thaw between the 4th and 52th hours of curing Slowing down cement hydratation phenomenon at the beginning with small 

effect on long term Delayed internal cohesion Modulus loss of about 23% at  10 days Long term modulus loss of about 10% (> 90 days) Validated value after 365days

Effect freeze‐thaw cycles, short term

Modulus measurements

Diametral Sinusoïdal Compression –DSC

Long term freeze‐thaw cycles  Freeze‐thaw (50 cycles) between 24d et 36d Modulus loss of 20% immediatly after the thermal sollicitations Modulus recovery « normal » at long term

Effect freeze‐thaw cycles, long term

Effect of 50 freeze‐thaw cycles, long term

curve at 15°C without freeze-

thaw

50 freeze-thaw cycles

4000

5000

6000

7000

8000

9000

10 100 1000

Time from production (days)

Mod

ulus

at 10

Hz

(MPa

)

24 days

37days

- 20%

Thermal stress, Contraints development

HM A with 70 /100 bitumen

RECYFLEX EBC

0.01.02.03.04.05.0

-35 -30 -25 -20 -15 -10 -5 0 5Température (°C)

Con

trai

nte

(M

pa)

df

Rheologicals behavior study

Temperature, °C

Ten

sile

str

ain

, MP

a

Recyflex AEC Observations

Process for optimun use of recyclable materials; Cold treatment using composite binder Strenghtened materials Low emissions production Accelarated curing time No rutting  Avoid maniability over 3 hours

Behavior between flexible and rigid pavements DSC Modulus

E (15°C,10Hz) = 7600 Mpa  Optimum around 30d‐60d Definitive loss of 10% in case of freeze‐thaw in the firsts hours of cure

Temporary loss of 20% after freeze‐thaw if Recyflex AEC have obtained the optimal cure

Low contrains development with thermal reduction

Fatigue analysis to complete

Recyflex AEC Observations

60 ESG-10 60 ESG-10 25 RUGOVIA TM

70 ESG-14 70 ESG-1460 ESG-14100 HMA Binder

180 HMA-20160 HMA-20

200 RECYFLEX AEC

050

100150

200250300

350400450

500

Chaussée EcorouteRecyflex AEC

Alternative

Flexibles pavement structures comparaison, A20 Highway

80 M esal : 2X 2 lanes (3450 Truks/day/direction/TL over 20 years)

Supposed Recyflex AEC Resilient Modulus = 3 000 MPa

Residual pavement structure Residual pavement structure

Residual pavement structure

Highway , Alternate pavement design

Hwy 485 Asphalt Pavement Design

Thickness (in.) MaterialAASHTO Structual Coefficient Value Structual total

3 S9.5D 0.44 1.324 I19.0D 0.44 1.76

11.5 B25.0C 0.3 3.450

7Subgrade

Stabilization 0.14 0.987.51

Alternate 1

Total Structual Value

Thickness (in.) MaterialAASHTO Structual Coefficient Value Structual total

3 S9.5D 0.44 1.326 I19.0D 0.44 2.640 B25.0C 0.3 08 Recyflex 0.34 2.72

7Subgrade

Stabilization 0.14 0.987.66

Alternate 4

Total Structual Value

Highway , Alternate pavement design

Recyflex AEC,

Main Runway Montreal airport‐ 1998

Arrival from Paris

Arrival from Orlando

31

Recyflex AEC

Development of a new Roadway pavement structure concept by using recycled materials

Recyvia, in‐Place (FDR)

In‐Place full depth reclamation

Cold In place  Recycling using composite binder or bitumen emulsion /foamed bitumen

Example of using composite binder in‐Place

Réalisation du projetRéalisation du projet

stabilisation

Stabilisation 175mm (16/08 au 28/08)±56800m²

RECYCLOVIA® Field of application

CIR In‐Place Cold recycling 6 à >15 cm.

Granular Base or Treated base 

1 à 5 cm.

Granular base

1 à 5 cm.

Granular base

RECYCLOVIA ®

In‐Place treatment : 6 à 15 cm  Asphalt Emulsion with Cement

RECYCLOVIA ®

In‐Place treatment :8 à 15 cm  Asphalt Emulsion / Foam asphaltwith Cement or hydrated lime

RECYCLOVIA ®

In‐Place treatment: 8 à 15 cm  Asphalt Emulsion / Foam asphaltWith cement or hydrated lime

Supply of aggregate forgradation correction

+ HMA / WMA wearing courseMicrosurfacing / Chip seal / Dense Cold mix (low trafic road)

Existing Asphalt pavement

Chip Seal Chip Seal

Recyclovia, in‐Place (CIR)

Weight empty: 47 t

Power : 800 hp 600 kW

Lenght : 15 m

Paver screed, extendable equiped with tamper bar compactor

Rotor for milling/recycling/mixing, with possible injection of:

‐ Foam asphalt‐ Asphalt emulsion‐Water

Cement spreader unit

Cement bin (4 t)

Recyclovia

Recyclovia, in‐Place (CIR)

‐Recycled cold treated materials behavior

‐Same mix design methodology for In‐plant, FDR and CIR;

‐Mechanical performances, Stability and Modulus;‐Air Voids;‐Retained Stability; 

‐Observations behavior:

‐Effect of RAP content

RequirementsMin.

Mix 138% CC16% RAP45% Aggregates

Mix 240% CC40% RAP20% Aggregates

Mix 3100% RAP

% Recovering Asphalt% Added Bitumen

0,63%1,53%

2,10%1,85%

5,38%1,0%

Marchall Stability at 22.2°C (N)

7 000 @ 10 000 26 200 18 583 8 575

Retained Stability (%) 70 84 90 93

% Coating 50 82 88 95

‐Recycled cold treated materials behavior

Complete environmental impact analysis

Janvier 2011 - page 43

Thanks for your attention

top related