adult echocardiography review harry h. holdorf phd, mpa, rdms (ab, ob, br), rvt, lrt(as)

Post on 19-Dec-2015

216 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Adult EchocardiographyReview

• Harry H. Holdorf PhD, MPA, RDMS (Ab, OB, BR), RVT, LRT(AS)

Which valve separates the areas of greatest pressure differences?

• Mitral valve

Know the anatomical locations of the following:

• Superior Vena Cava

• Aorta

• Pulmonary Artery

• Left Anterior Descending Coronary artery and vein

• Great cardiac Vein

• LAD lies in the anterior interventricular groove or SULCUS

Which aortic leaflet is the superior one in the parasternal long axis view?

• Right leaflet is superior

• Non-coronary is the posterior leaflet

From the left parasternal window, which of the following are you most likely to get

accurate velocity measurements?

• Pulmonary artery

Know the basic anatomy by other imaging techniques

• MRI study showing the descending aorta (view mimics the LAX)

Name the tricuspid leaflets

• Posterior and anterior

Know that the RV inflow tract view is the only standard view in which you see the posterior

tricuspid leaflet

• How to visualize the posterior leaflet of the tricuspid valve?

• Also, in this view, red inflow at the image bottom would be…the IVC.

The inter-atrial septum connects to which aortic valve?

• The non-coronary

The coronary arteries come off the?

• Sinuses of Valsalva

It is important to visualize the origin of the coronary arteries because…

• Patients, when exerting and dilating the great vessels, can suffer ischemia, angina, or sudden death

• Anomalous coronaries

During which phase do the coronaries fill?

• Early diastole

In the super-sternal arch view, what is the structure seen under the arch?

• Right pulmonary artery

What cardiac pathology is associated with bicuspid aortic valves?

• Coarctation of the aorta

Where do most aortic coarctations occur?

• After the take-off of the left subclavian artery, or within the aortic isthmus.

• (The beginning of the descending aorta)

On a apical four chamber view:Where are the pulmonary veins located?

Which ones are seen on this view?

• Right and left upper (superior) pulmonary veins

Which other view would give you the same information as the parasternal

LAX?

• Apical LAX

Which standard 2D TTE view typically allows viewing of the Left atrial

appendage?

• Apical 2 chamber

Where is the coronary sinus located?

• Posterior Atrial ventricular groove

• Also, know that the “dot” on the coronary sinus LAX view that is to the right and posterior to the coronary sinus is the descending aorta

To visualize the coronary sinus in the apical 4 chamber view, you should tilt

the transducer

• Posterior

Which valve sits at the opening of the coronary sinus?

• Thebesian

What portion of the pulmonary venous PW Doppler represents atrial

systole?

• A wave

At what temperature is it unsafe to use the TEE probe?

• 40-45C

Know where the LA appendage is by TEE.

• To the left of the image, coming of the LA at 3 o’clock and turning down

Know the TEE views by esophageal level

Regarding cardiac physiology, which has the fastest intrinsic rate?

• SA node

What is the absolute refractory state?

• That period when a muscle cell is not excitable- from phase 1 until into phase 3

• The relative refractory period is during phase 3 and the muscle cell might contract if the stimulus is strong

Know what P wave, P-R interval, and T wave represents

• P wave = atrial systole

• P-R interval = includes P-R segment from atrial ventricular depolarization

• T wave = ventricular diastole (repolarization)

What is the normal duration for the QRS complex

• 0.10 sec to .12 sec

Electrocardiogram

• 1 small box = 0.04 seconds

• 1 big box = 0.2 seconds

• 5 big boxes = 1 second

Know Frank-Starling Law

• Increased volume (preload) = increased contractility (to a physiologic limit)

• Increased myocardial fiber length = increased tension (rubber band theory)

Chronic vs. Acute shift in the Frank – Starling graph

• Acute AI is hyper contractile because we shift up the Starling curve

• Chronic AI is failure when we drop off the end

Echo findings for preload vs. afterload

• Preload = dilatation

• Afterload = hypertrophy

Which study does not allow for the calculation of ejection fraction?

• Chest x-ray

Calculate cardiac output (CO)

• Co = SV (stroke volume) x HR (heart rate)

• Normal is 4-8 L/min (5 Average)

How does switching to a lower frequency transducer affect aliasing?

• Aliasing will occur at higher frequencies

What does VTI (Velocity time integral) x CSA (Cross sectional area) equal?

• Doppler stroke volume

Does venous return increase or decrease with inspiration?

• increase

Inhalation of amyl nitrate causes:

• Decreased afterload

• Vaso dilator- drops BP

• Tachycardia response- increased stroke volume- increase heart rate

Mitral valve velocity during inspiration:

• Decreases

Know Wiggers Diagram

• Mitral closure

• Aortic opens

• Aortic closure

• Mitral opens

Wiggers:

• Know isovolumetric timing with ECG:

• After R wave – isovolumic contraction

• After T wave – isovolumic relaxation

• Know the duration of IVRT and IVCT

• 70 msec

• On Wiggers, when is the mitral valve open?

• 4-1

• The duration of isovolumetric relaxation time will be increased with

• Bradycardia

• Between which heart sounds will the murmur of aortic stenosis be heard?

• S1-S2

• During the cardiac cycle, this event NEVER happens:

• Ao valve is open and mitral valve is open

Stuff you gotta know regarding the cardiac cycle

• Normal arterial pressure is approx. 120/80. Thus, the aortic pressure lives high

• Normal left atrial pressure is approx. 10 mmHg. Thus, the atrial pressure lives low

• The left ventricular pressure bounces between aortic and atrial. High and Low

• The valve that lives between the atrium and the left ventricle is the mitral valve. The mitral valve lives low.

• When a normal valve is open, there is very little pressure difference between the chambers on either side of the valve.

What is the normal pressures in the pulmonary artery?

• 25/10

Where is the O2 saturation the lowest in the heart

• Coronary sinus

O2 saturation…

• Pulmonary veins = 95%

• Pulmonary arteries = 75%

Best cath. Technique for LV function

• LV angiogram

Know pressure waveforms forAortic StenosisMitral Stenosis

Mitral Regurgitation

• See next three slides

What is PCW (Pulmonary Capillary Wedge) measuring?

• Left atrial pressure

To determine AS, where are the catheters placed?

• One in the LV and one in the Ao or one in the LV and pulled back across the AoV or one catheter with two separate sensors.

Technique

• Tissue harmonic imaging results in thicker valve leaflets

A secondary finding in aortic stenosis is?

• Left ventricular hypertrophy

In aortic stenosis, is pulse pressure wide or narrow?

• Narrow

• Pulse pressure is the difference between systolic and diastolic pressures – it is wide in AI and narrow in AS

The best view to diagnosis a bicuspid aortic valve is the parasternal…

• Short-axis systole

Systemic hypertension…

• Is a common symptom of aortic Coarctation

What is Takayasu’s arteritis?

• Also called aortic arch syndrome: occurs more in young women from Asia. There is fibrosis of the arch and descending Ao of unknown etiology. In advanced states, multiple coarctations may occur (look for supravalvular aortic stenosis)

The normal aortic valve areas is?

• 3-4 cm sq.

Patients BP = 110/84Aortic velocity is 5 m/sec

Peak LV pressure in this patient is?

• 210 mm Hg

• Add the Ao gradient (100 mm Hg if the velocity is 5 m/sec) to the systolic BP.

Using the continuity equation, when would be severity of Aortic Stenosis

be underestimated?

• LVOT measured too large

Which pressure is obtained during Doppler?

• Peak or peak instantaneous

• For AS it is the highest gradient anytime during systole

Know that echo gradients are usually higher than catheter gradients

• Peak instantaneous vs. peak-to-peak

Noonan Syndrome

• Classified as a cardio-facial syndrome with Pulmonary Stenosis, Hypertrophy Cardiomyopathy, and Atrial Septal Defect (30%)

Pulmonary Stenosis…

• Does NOT cause pulmonary hypertension

Asked if unable to obtain pulmonary stenosis gradient from the parasternal

window, where else would you go?

• Subcostal short-axis

The insertion of mitral chordae tendineae into a single papillary

muscle is

• Parachute mitral valve

Which cardiac valve is the second most common to be affected by rheumatic

health disease?

• Aortic

Longstanding Mitral Stenosis leads to all of the following :

Congestive heart failure

Pulmonary hypertension

Left atrial dilatation

Mitral stenosis = low frequency…

• Diastolic Rumble

• Opening SNAP

Rheumatic Mitral Stenosis…

• “Hockey-Stick” presentation

With atrial fibrillation, mitral stenosis velocity calculations are best

performed…

• Averaged over 5-10 beats

Regarding Tricuspid Stenosis:Carcinoid vs. Rheumatic…

• Carcinoid – fixed body of the leaflets

• Rheumatic – tethered leaflet tips

Which anomaly goes with aortic dissection?

• Marfan syndrome

If you have a uniformly dilated aortic root, which best describes this?

• fusiform

Which is the most common chamber for a sinus of Valsalva aneurysm to

rupture into?

• Right atrium

What kind of murmur would you hear in a patient with a rupture of a sinus of

Valsalva aneurysm?

• Continuous

The classic aortic regurgitation murmur is …

• Diastolic “blow”

Diastolic Mitral valve from aortic regurgitation is demonstrated by…

• M-mode fluttering

What causes Mitral valve preclosure?

• An elevated LVEDP

• Left Ventricular End diastolic pressure

Know color Doppler M-mode of aortic insufficiencyAKS Aortic Insufficiency

Know descending aorta diastolic flow reversal (AKA retrograde)

Mild aortic regurgitation

• Has an incomplete spectral trace

How would you calculate pulmonary artery end diastolic pressure?

• Pulmonic insufficiency velocity

Systolic flow reversal of bubbles in the IVCTricuspid Regurgitation or

Tamponade?

• Tricuspid regurgitation

What is the most common valvular abnormality associated with carcinoid

syndrome?

• Tricuspid regurgitation

CVP (central Venous Pressure)

• Refers to the IVC pressure close to the Right atrium

Hepatic venous flow reversal indicates

• Severe tricuspid regurgitation

A patient has a right ventricular systolic pressure (RVSP) of 60 mm Hg. One year later RVSP is 30

mm Hg. What happened to this patient?

• Dilated cardiomyopathy

A vena contracta (narrowest part of a color jet) might be seen in which type of

cardiomyopathy?

• Dilated

Coanda Effect

• Happens with wall hugging jets.

• May underestimate jet size.

If you suspect severe Mitral regurgitation, where else should you

look?

• Pulmonary veins

The greatest source of error in measuring Proximal iso-velocity surface

area (PISA) is with

• Radius of the flow convergence

Which of the following is used in echo to measure dP/dt? (the rate of rise of Left

ventricular pressure)

• Mitral regurgitation

dP/dt measurement of mitral regurgitation assesses what?

• LV systolic function

Know pressure waveforms for Mitral regurgitation (late systolic jump in LA

pressure

Mitral valve prolapse:Know about Marfan disease

• Congenital connective tissue disease causing aortic dilatation and mitral valve prolapse (MVP)

In Marfan syndrome, why does aortic dissection and MVP occur?

• Decreased fibrillin

Know Ehlers-Danlos

• Another connective tissue disease:

• Like Marfan patients, you would look for MP, Dilated Ao, and dissection

Severe aortic aneurysms are greater than:

• 5.0 cm

MVP

• Usually will be shown a 4-chamber image with obvious MVP

Regarding EndocarditisLibman-Sachs

Marantic endocarditis

• Libman-Sachs = endocarditis caused by lupus

• Marantic = non-bacterial NBTE

Patients with a history of IV drug abuse may present with:

• Tricuspid endocarditis

Can one tell old vs. new vegitations?

• no

In order to be seen by 2-D, vegetations need to be at least

• 3 mm

Know what a ball and cage Mitral Valve looks like

Know that St. Jude is a bi-leaflet valve

Autographs…

• Use patient’s own tissue

• Regarding prostatic valves:

• Acoustic shadowing with mitral valve prosthesis

• Know echo appearance of common valves

• Know the term Pannus = host tissue overgrowth

The normal pressure half-time for a mitral prosthetic valve is

• < 170 msec

Cardiomyopathies:Which cardiomyopathy is autosomal

dominant?

• hypertrophic

HOCM

• Hypertrophic obstructive cardiomyopathy

The ratio of assessing asymmetric hypertrophy:

• 1.3:1

The Venturi Effect

• Law of conservation of energy means that when the velocity of fluid increased, the pressure decreases.

The Venturi Effect can be associated with which cardiomyopathy?

• hypertrophic

LVOT obstruction causes the aortic valve to

• Close in mid systole

Mitral inflow shows A wave greater than E

• Some degree of diastolic dysfunction, abnormal relaxation

Does Inderal (beta Blocker) increase SAM? Systolic Anterior Motion

• No

• Decreases heart rate

• Reduces SAM with exercise

A late peaking Doppler jet…

• Goes along with:

• HOCM: Hypertrophic Obstructive Cardiomyopathy

• IHSS: Idiopathic hypertrophic Subaortic Stenosis

• 61 year old male with IHSS and a resting gradient of 144 mm Hg.

• Admitted to the hospital with chest pain.

• Next day the resting gradient was 15 mm Hg.

• What happened?

• Left ventricular infarct

Strain: measures the deformation within the myocardium

Global Longitudinal Strain in patients with HOCM is typically:

• -10

Chagas’ disease

• Posterior and apical thinning of the myocardium

• Septum is usually normal

Know the Echo signs of congestive cardiomyopathies

What is the cause of a B-notch

• Increased LVEDP

• Left Ventricular End Diastolic Pressure

Know post-transplant 2-D appearanceWill have double atria

Amyloid and sarcoid are what type of cardiac abnormalities?

• Infiltrative is via pathology and is the correct answer

• Restrictive would be via physiology

Hemochromatosis

• Excessive iron

Amyloidosis involves abnormal proteins.

• Some may describe it as a translucent waxy protein build-up on the myofibrils

Ground glass appearance:Related to infiltrative myocarditis

A restrictive cardiomyopathy has:

• Decreased Left Ventricular Compliance

A typical ejection fraction in a dilated cardiomyopathy patient might be? (for a

HCM patient)

• 15-25% (pick the lowest range given)

The majority of ventricular filling occurs during:

• First third of diastole

Know the following filling patterns:

If a patient has a normal Mitral valve inflow but the pulmonary veins showed a

decreased S-Wave and D-Wave…

• Consider that they might have a pseudonormal pattern

Diastolic Function values

• In elderly patients (>60), the A wave is normally equal to or higher than the E-wave

Know how the normal Doppler waveform at the mitral annulus differs from flow at

the mitral leaflet tips:

• E and A are reversed at these two sample sites

How would you determine if a patient has constrictive versus restrictive

disease?

• Mitral valve inflow with respiratory variation with constrictive disease

In constrictive pericarditis, does the E wave increase or decrease with

inspiration

• decrease

Name the three layers of the pericardium

• 1. fibrous pericardium –thick outer sack

• 2. serous parietal-bound to fibrous pericardium smooth, wall of the cavity

• 3. serous visceral – bound to epicardium smooth, toward the organ

• Pericardial fluid is found in between the two serous layers

A pericardial effusion can often be seen in patients with:

• Renal failure

Know the classic M-mode pattern of a pericardial effusion

M-mode echocardiogram showing moderate pericardial effusion present anteriorly(PE) and posteriorly(PPE). RVW=right ventricular wall

Know the anterior echo free spaceshown on a 2-D Parasternal LAX

• Anterior echo-free space is probably an epi-cardial fat pad

Know what a large pericardial effusion looks like (>500 cc)

Pericardial Effusion Grading Criteria

• Small = posterior fluid < 1 cm

• Medium = Anterior & posterior < 1 cm

• Large = Surrounding the heart > 1 cm

• ALSO: measure spaces in Diastole

Identify the coronary sinus vs. the descending Ao and it’s importance

Pleural Effusion

Know where the oblique sinus of the pericardium lies:

• Posterior to the LA in the PLAX view – area between the two sets of pulmonary veins

What to do if tamponade is suspected?

• Immediate interpretation

Know Beck’s triad

• A. Elevated venous pressure

• B. Hypotension

• C. Quiet heart

• Elevation of venous veins (look at the Internal Jugular Vein in the neck)

The most sensitive way to diagnosis cardiac tamponade is:

• RV diastolic collapse

• RV systolic collapse

• M-Mode of the LA wall motion

• Respiratory variation

What cardiac condition would prevent diastolic right ventricular collapse?

• Concentric LVH

• High systemic hypertension

• Pulmonary hypertension

• Tricuspid regurgitation

Flow Variation in TamponadeKnow how respiration affects the mitral

and tricuspid flows in tamponade

• Reversal of normal

• In Tamponade what happens to hepatic diastolic and systolic flows during expiration?

• What happens in a normal patient?

What other pericardial abnormality also causes impaired ventricular

filling?

• Constrictive pericarditis

A huge, dilated Pulmonary Artery, severe Tricuspid regurgitation, and Right

Ventricular enlargement best describes…

• Pulmonary hypertension

Know Eisenmenger Syndrome

• Eisenmenger's syndrome is defined as obstructive pulmonary vascular disease that develops as a consequence of a large pre-existing left-to-right shunt causing pulmonary artery pressures to increase and approach systemic levels, such that the direction of blood flow then becomes bi-directional or right-to-left.

What is represented with a decreased “a” wave and a flying W?

Pulmonary hypertension by M-mode

With small pulmonary emboli, the heart may be normal.

• With large pulmonary emboli, the Right ventricle/right atria will dilate.

• Pulmonary hypertension or Right ventricular systolic dysfunction may be present

• SAX LV in PHTN stays flattened, while RV volume overload rounds some in systole.

Given tricuspid regurgitation with 60 mm Hg gradient, grade the severity of

pulmonary hypertension

• Severe

Pulmonary artery pressure

• Normal = 18 – 30 mm Hg

• Mild = 30-40 mm Hg

• Moderate = 40-70 mm Hg

• Severe = >70 mm Hg

Your patient has PHTN with a dilated IVC (3cm)which collapsed 50% with sniff. Estimate the RA

pressure.

• 15 mm Hg

• Hint: IVC= anything over 2 is dilated

The size of aneurysms during systole…

• Increases

The most common (mechanical) complication of an MI…

• Aneurysm formation

Dressler syndrome

• Post MI Peri-Carditis

What type of MI causes papillary muscle rupture?

• Inferior MI

Which of the following occurs first in the setting of severe mitral regurgitation due

to a flail leaflet?

• Dilated right ventricle

Know true vs. pseudo aneurysm

• True

• Wide base

• Walls composed of myocardium

• Low risk of free rupture

• Pseudo

• Narrow base

• Walls composed of thrombus and pericardium

• HIGH RISK OF FREE RUPTURE

The most common location for Pseudoaneurysm:

• Inferior basal, NOT apical

Does the wall of a Pseudoaneurysm contain endocardium?

• No

• It’s a rupture across both endo and myocardium

What information do you need pre-op in a patient with a LV aneurysm?

• Movement of other walls

Color Doppler in ischemic disease can be good for?

• Ventricular septal defect, because you can use PW & CW Doppler for detecting MR

What do you look for in a patient with Kawasaki disease?

• Coronary artery aneurysms

What term refers to a decrease in wall motion?

• hypokinesis

AkinesisDyskinesis

• Akinesis = no motion and no thickening of walls

• Dyskinesis = Left bundle block branch

What is the IVS motion in a patient with LBBB?

• Dyskinetic or paradoxical

From where do the coronaries originate?

• In the left and right aortic sinus of Valsalva

What is meant by “right Dominance”?

• When the right coronary gives rise to the posterior descending artery (85% of the time).

Which coronary supplies the inter-atrial septum?

• Right (also usually supplies the SA and AV nodes)

Which coronary artery feeds the infero-septal wall?

• Right coronary artery

Know the indications for stress echo…

• To aid in the diagnosis of chest pain

• To determine the severity and prognosis of coronary artery disease

• To guide post MI rehab

• To evaluate cardiac arrhythmias

• To screen high risk or asymptomatic patients with multiple risk factors

Know that in multi-vessel disease, stress echo is better than…

• Nuclear stress scans

• Single vessel disease: Nuclear medicine is better

• Multiple vessel disease: Echo stress is better

Normal response to stress includes all of the following:

• Hyper-dynamic walls

• Systolic thickening

• Decreased systolic cavity

• Normal diastolic dimensions

What would be a contraindication to perform a stress test on an athlete

with chest pain?

• Unstable angina

Pharmacological Stress Echo:

• Know that Atropine may be given at peak does if the target hart rate is not reached.

When the 2-D image appears to have three atria, it might mean that the

patient has a Cor Triatium

• This is a congenital malformation where there is a membrane above the level of the mitral valve. In severe cases, there is supravalvular stenosis.

What is the most common type of Atrial Septal Defect?

• Secundum (70%)

• mid-septal area

Partial anomalous pulmonary venous return is seen with what type of ASD?

• Sinus venosus

• Superior septal area- associated with anomalous pulmonary venous return (80%)

Which is the best view to diagnosis a sinus venosus ASD?

• Modified subcostal four chamber view

Best view to demonstrate an ASD?

• Subcostal 4-chamber

If you see anechoic dropout of the interatrial septum in the apical 4

chamber view, what should you do?

• Look in the subcostal 4-chamber view

What is the standard echo view for contrast studies of an ASD?

• Apical 4-chamber

How many beats to see contrast on the left side in a patient with an ASD?

With a pulmonary shunt?

• 1-2 beats for an ASD

• 3-5 beats for pulmonary shunt

Persistent Left Vena Cava has a dilated coronary sinus

• Most common venous malformation

Where should contrast be injected in order to diagnosis a persistent left

superior vena cava?

• Left arm

Know endo-cardiac cushion defect (AV septal)…

• Are associated with Down Syndrome or trisomy 21

Which is the most common type of VSD?

• Peri-membranous

Know Supra-cristal location

• High near the aortic and pulmonary valves

Know inlet location

• Subvalvular low near the mitral and tricuspid valves

The typical murmur of a ventricular septal defect. It is usually best heard over the “tricuspid area”, or the lower left sternal border, with radiation to the right lower sternal border because this is the area which overlies the defect. It is characteristically a holosystolic murmur because the pressure difference between the ventricles is generated almost instantly at the onset of systole, with a left to right shunt continuing throughout ventricular contraction. If the defect persists without treatment, irreversible pulmonary hypertension may develop with reversal of the shunt into a right to left flow pattern (Eisenmenger syndrome). There is usually no diastolic component to the murmur, as the pressure between the ventricles during diastole is not sufficiently different to generate an audible flow.     Because the flow pattern is usually left to right, the right ventricle suffers from volume overload and takes longer to eject the stroke volume. This causes a slight delay in the closing of the pulmonary valve, and a widely split S2 may result.

What congenital abnormality has a displaced Tricuspid Valve?

• Ebstein’s

What is Wolff-Parkinson-White Syndrome?

• Wolff–Parkinson–White syndrome (WPW) is one of several disorders of the conduction system of the heart that are commonly referred to as pre-excitation syndromes. WPW is caused by the presence of an abnormal accessory electrical conduction pathway between the atria and the ventricles. Electrical signals traveling down this abnormal pathway (known as the bundle of Kent) may stimulate the ventricles to contract prematurely, resulting in a unique type of supra-ventricular tachycardia referred to as an atrioventricular reciprocating tachycardia.

If a large PDA (patent ductus arteriosus) is not corrected, what

might develop?

• Eisenmenger Syndrome

All are Tetralogy of Fallot defects

• Large VSD

• Pulmonary stenosis

• Right ventricular hypertrophy

Regarding missiles:

• For foreign bodies: use x-rays for reference.

• Use off-axis views

What part of the heart is most likely to be affected by cardiac contusion

• Right ventricle

Regarding Masses:What might be the 1st indication of

metastatic cardiac disease?

• Pericardial effusion

Which cardiac chamber is most likely involved with metastatic tumors?

• Right atrium

The most common benign tumor on the aortic valve is:

• Papillary fibroelastoma

Left atrial myxomas are usually located…

• Interatrial septum

top related