241-437 compilers: topdown/5 1 compiler structures objective – –look at top-down (ll) parsing...

Post on 11-Jan-2016

219 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

241-437 Compilers: topDown/5 1

Compiler Structures

• Objective– look at top-down (LL) parsing using recursive descent and tables– consider a recursive descent parser for the Expressions language

241-437, Semester 1, 2011-2012

5. Top-down Parsing

241-437 Compilers: topDown/5 2

Overview

1. Parsing with a Syntax Analyzer

2. Creating a Recursive Descent Parser

3. The Expressions Language Parser

4. LL(1) Parse Tables

5. Making a Grammar LL(1)

6. Error Recovery in LL Parsing

241-437 Compilers: topDown/5 3

In this lecture

Source Program

Target Lang. Prog.

Semantic Analyzer

Syntax Analyzer

Lexical Analyzer

FrontEnd

Code Optimizer

Target Code Generator

BackEnd

Int. Code Generator

Intermediate Code

but concentratingon top-down parsing

241-437 Compilers: topDown/5 4

1. Parsing with a Syntax Analyzer

LexicalAnalyzer

(using chars)

SyntaxAnalyzer

(using tokens)

SourceProgram

3. Token,token value

1. Get nexttoken

lexicalerrors

syntaxerrors

2. Get charsto makea token

parsetree

241-437 Compilers: topDown/5 5

1.1. Top Down (LL) Parsing

begin simplestmt ; simplestmt ; end

S S SS

SS

SS

B 1

2

3

4

5

6

B => begin SS end

SS => S ; SS

SS => S => simplestmt

S => begin SS end

241-437 Compilers: topDown/5 6

1.2. LL Parsing Definition

• An LL parser is a top-down parser for a context-free grammar.

• It parses input from Left to right, and constructs a Leftmost derivation of the input.

241-437 Compilers: topDown/5 7

A Leftmost Derivation

• In a leftmost derivation, the leftmost non-terminal is chosen to be expanded.– this builds the parse tree top-down, left-to-right

• Example grammar:L => ( L ) L

L =>

241-437 Compilers: topDown/5 8

Leftmost Derivation for (())()

LL // L => ( L ) L// L => ( L ) L

( ( LL ) L ) L // L => ( L ) L// L => ( L ) L

( ( ( ( LL ) L ) L) L ) L // L => // L =>

( ( ) ( ( ) LL ) L ) L // L => // L =>

( ( ) ) ( ( ) ) LL // L => // L =>

( ( ) ) ( ( ( ) ) ( LL ) L ) L // L =>( L ) L// L =>( L ) L

( ( ) ) ( ) ( ( ) ) ( ) LL // L => // L =>

( ( ) ) ( )( ( ) ) ( )

( ( ) ) ( )

input

241-437 Compilers: topDown/5 9

1.3. LL(1) and LL(k)

• An LL(1) parser uses the current token only to decide which production to use next.

• An LL(k) parser uses k tokens of input to decide which production to use– this make the grammar easier to write– adds no 'power' compared to LL(1)– harder to implement efficiently

241-437 Compilers: topDown/5 10

1.4. Two LL Implementation Approaches

• Recursive Descent parsing – all the compiler code is generated

(automatically) from the grammar

• Table Driven parsing– a table is generated (automatically) from the

grammar– the table is 'plugged' into an existing compiler

241-437 Compilers: topDown/5 11

2. Creating a Recursive Descent Parser

• Each non-terminal (e.g. A) is translated into a parsing function (e.g. A()).

• The A() function is generated from all the productions for A:– A => B, A => a C, etc.

241-437 Compilers: topDown/5 12

2.1. Basic Translation Rules

• I'll start by assuming a production body doesn't use *, [], or .– I'll add to the translation rules later to deal with

these extra features

• S => Bodybecomesvoid S(){ translate< Body > }

241-437 Compilers: topDown/5 13

• If Body isB1 B2 . . . Bn

then it becomes:

translate< B1 > ;translate< B2 > ; :translate< Bn > ;

241-437 Compilers: topDown/5 14

• If Body isB1 | B2 . . . | Bn

then it becomes:

if (currToken in FIRST_SEQ<B1>) translate<B1> ;else if (currToken in FIRST_SEQ<B2>) translate<B2> ; :else if (currToken in FIRST_SEQ<Bn>) translate<Bn> ;else error();

241-437 Compilers: topDown/5 15

• currToken is the current token, which is obtained from the lexical analyzer:

Token currToken; // global

void nextToken(void){ currToken = scanner(); }

241-437 Compilers: topDown/5 16

• The first token is read when the parser first starts. main() also calls the function representing the start symbol:

int main(void){ nextToken(); S(); // S is the grammar's start symbol : // other code return 0;}

241-437 Compilers: topDown/5 17

• error() reports that the current token cannot be matched against any production:

int lineNum; // global

void error(){ printf("\nSyntax error at \'%s\' on line %d\n", currentToken, lineNum); exit(1);}

241-437 Compilers: topDown/5 18

• In a body, if B is a non-terminal, it is translated into the function call:

B();

• In a body, if b is a terminal, it is translated into a match() call:

match(b);

241-437 Compilers: topDown/5 19

• match() checks that the current token is what is expected (e.g. b), and reads in the next one for future testing:

void match(Token expected){ if(currToken == expected) currToken = scanner(); else error();}

241-437 Compilers: topDown/5 20

• Special '|' Body case. If Body isa1 B1 | a2 B2 . . . | an Bn // ai's are terminals

then it becomes:

if (currToken == a1) { match(a1); translate<B1> ; }else if (currToken == a2) { match(a2); translate<B2> ; } :else if (currToken == an) { match(an); translate<Bn> ; }else error();

a1, a2, ..., anmust be different

241-437 Compilers: topDown/5 21

void S() { // S => a B | b C if (currToken == a) {

match(a); B(); } else if (currToken == b) {

match(b); C(); } else error();}

void B() { // B => b b C match(b); match(b); C();}

void C() { // C => c c match(c); match(c);}

2.2. Example Translation

And main(),nextToken(),match(), anderror().

241-437 Compilers: topDown/5 22

Parsing "abbcc"

S

a B

b b C

c c

Function calls:main() --> S() --> match(a); B() --> match(b); match(b); C() --> match(c); match(c)

a b b c c

input

241-437 Compilers: topDown/5 23

2.3. When can we use Recursive Descent?• A fast/efficient recursive descent parser can

be generated for a LL(1) grammar.

• So we must first check if the grammar is LL(1).– the check will generate information that can be

used in constructing the parser– e.g. FIRST_SEQ<...>

241-437 Compilers: topDown/5 24

Dealing with "if"

• A tricky part of LL(1) is making sure that A tricky part of LL(1) is making sure that branches can be codedbranches can be coded– each branch must start differently so it's easy each branch must start differently so it's easy

(and also fast) to decide which branch to use (and also fast) to decide which branch to use based only on the current input token based only on the current input token (currToken value)(currToken value)

continued

241-437 Compilers: topDown/5 25

• e.g.e.g.– A --> a B1A --> a B1

A --> b B2A --> b B2– is okay since the two branches start is okay since the two branches start

differently (a and b)differently (a and b)

– A --> a B1A --> a B1A --> a B2A --> a B2

– notnot okay since both branches start the same okay since both branches start the same wayway

a .. .. .. ..

currToken

continued

241-437 Compilers: topDown/5 26

• In non-mathematical words, a grammar is In non-mathematical words, a grammar is LL(1) if the choice between productions LL(1) if the choice between productions can be made by looking only at the start of can be made by looking only at the start of the production bodies and the current input the production bodies and the current input token (currToken).token (currToken).

241-437 Compilers: topDown/5 27

Is a Grammar LL(1)?

• For every non-terminal in the language (e.g. A, B, C), generate the PREDICT set for all the productions:

PREDICT( A => 1) PREDICT( A => 2 )PREDICT( A => 3 )

PREDICT( B => 1 ) PREDICT( B => 2 )

PREDICT( C => 1 ) ...

in maths

continued

241-437 Compilers: topDown/5 28

• Take the intersection of all Take the intersection of all pairs of setspairs of sets for A: for A:PREDICT( A => PREDICT( A => 1) 1) ∩∩PREDICT( A => PREDICT( A => 2 ) 2 ) ∩∩

PREDICT( A => PREDICT( A => 1) 1) ∩∩PREDICT( A => PREDICT( A => 3 ) 3 ) ∩∩

PREDICT( A => PREDICT( A => 2) 2) ∩∩PREDICT( A => PREDICT( A => 3 ) 3 ) ∩∩

– the intersection of the intersection of every pair every pair must be empty (must be empty (disjointdisjoint))

continued

241-437 Compilers: topDown/5 29

• Repeat for all the sets for B, C, etc.:Repeat for all the sets for B, C, etc.:– B --> B --> 11 B --> B --> 22– C --> C --> 11 C --> C --> 22 C --> C --> 33

• If every PREDICT intersection pair is If every PREDICT intersection pair is disjoint then the grammar is LL(1).disjoint then the grammar is LL(1).

continued

241-437 Compilers: topDown/5 30

• If there's only one PREDICT set for a non-terminal (e.g. D --> d1), then it's automatically disjoint.

241-437 Compilers: topDown/5 31

Calculating PREDICT

• PREDICT(A => ) = (FIRST_SEQ() – { FOLLOW(A)

if in FIRST_SEQ()or= FIRST_SEQ() if not in FIRST_SEQ()

• FIRST_SEQ() and FOLLOW() are the set functions I described in chapter 4.

241-437 Compilers: topDown/5 32

Short Example 1

• S => a S | a• Production Predict

– S => a S {a}– S => a {a}

• PREDICT(S) = {a} ∩ {a } == {a}– not disjoint– the grammar is not LL(1)

241-437 Compilers: topDown/5 33

Short Example 2

• S => a S | b• Production Predict

– S => a S {a}– S => b {b}

• PREDICT(S) = {a} ∩ {b } == {}– disjoint– the grammar is LL(1)

241-437 Compilers: topDown/5 34

Larger Example

• Is this grammar LL(1)?E => T E1

E1 => + T E1 | T => F T1

T1 => * F T1 | F => id | '(' E ')'

FIRST(F) = {(,id}

FIRST(T) = {(,id}

FIRST(E) = {(,id}

FIRST(T1) = {*,}

FIRST(E1) = {+,}

FOLLOW(E) = {$,)}

FOLLOW(E1) = {$,)}

FOLLOW(T) = {+$,)}

FOLLOW(T1) = {+,$,)}

FOLLOW(F) = {*,+,$,)}

241-437 Compilers: topDown/5 35

ProductionProduction PredictPredict

E => T E1E => T E1 = FIRST(T) = {(,id}= FIRST(T) = {(,id}

E1 => + T E1 => + T E1E1

{+}{+}

E1 => E1 => = FOLLOW(E1) = {$,)}= FOLLOW(E1) = {$,)}

T => F T1T => F T1 = FIRST(F) = {(,id}= FIRST(F) = {(,id}

T1 => * F T1T1 => * F T1 {*}{*}

T1 => T1 => = FOLLOW(T1) = {+,$,)}= FOLLOW(T1) = {+,$,)}

F => idF => id {id}{id}

F => ( E )F => ( E ) {(}{(}

FIRST(F) = {(,id}

FIRST(T) = {(,id}

FIRST(E) = {(,id}

FIRST(T1) = {*,}

FIRST(E1) = {+,}

FOLLOW(E) = {$,)}

FOLLOW(E1) = {$,)}

FOLLOW(T) = {+$,)}

FOLLOW(T1) = {+,$,)}

FOLLOW(F) = {*,+,$,)}

241-437 Compilers: topDown/5 36

• Are the PREDICT sets disjoint for all the non-terminals?– PREDICT(E): {(,id} yes– PREDICT(E1): {+} ∩ {$,)} yes– PREDICT(T): {(,id} yes– PREDICT(T1): {*} ∩ {+,$,)} yes– PREDICT(F): {id} ∩ {(} yes

• All disjoint, so the grammar is LL(1).

241-437 Compilers: topDown/5 37

2.4. Extended Translation Rules

• These extra rules allow a production body to use *, [], or .

• S => Bodybecomesvoid S(){ translate< Body > }

same as before

241-437 Compilers: topDown/5 38

• If Body isB1 | B2 . . . | Bn |

then it becomes:

if (currToken in FIRST_SEQ(B1)) translate<B1> ;else if (currToken in FIRST_SEQ(B2)) translate<B2> ; :else if (currToken in FIRST_SEQ(Bn)) translate<Bn> ;else error();

optional part

include if there's no part in the grammar

241-437 Compilers: topDown/5 39

• If Body is[ B1 B2 . . . Bn ]

then it becomes:

if (currToken in FIRST_SEQ(B1)) { translate<B1> ; translate<B2> ; : translate<Bn> ;}

– [ B1 B2 ... Bn ] is the same as ( B1 B2 ... Bn ) |

rule []-1

241-437 Compilers: topDown/5 40

• A variant [] translation. If the body is[ B1 B2 . . . Bn ] C

then it can become: if (currToken not in FIRST_SEQ(C)) translate<B1> ; translate<B2> ; : translate<Bn> ; } translate<C> ;

rule []-2

This may besimpler code than FIRST_SEQ(B1)

241-437 Compilers: topDown/5 41

• Another variant [] translation. If the grammar rule is

A => [ B1 B2 . . . Bn ]

then it becomes:void A() { if (currToken not in FOLLOW(A)) translate<B1> ; translate<B2> ; : translate<Bn> ; }}

rule []-3

This may besimpler code than FIRST_SEQ(B1)

241-437 Compilers: topDown/5 42

• If Body is( B1 B2 . . . Bn )*

then it becomes:

while (currToken in FIRST_SEQ(B1)) translate<B1> ; translate<B2> ; : translate<Bn> ;}

rule *-1

241-437 Compilers: topDown/5 43

• A variant * translation. If the body is( B1 B2 . . . Bn )* C

then it becomes: while (currToken not in FIRST_SEQ(C)) translate<B1> ; translate<B2> ; : translate<Bn> ; } translate<C> ;

rule *-2

This may besimpler code than FIRST_SEQ(B1)

241-437 Compilers: topDown/5 44

• Another variant * translation. If the grammar rule is

A => ( B1 B2 . . . Bn )*

then it becomes:void A() { while (currToken not in FOLLOW(A)) translate<B1> ; translate<B2> ; : translate<Bn> ; }}

rule *-3

This may besimpler code than FIRST_SEQ(B1)

241-437 Compilers: topDown/5 45

• match() is slightly changed to deal with the end of input symbol, $:

void match(Token expected){ if(currToken == expected) { if (currToken != $)

currToken = scanner();}

else error();}

241-437 Compilers: topDown/5 46

Translation Example 1

• The LL(1) Grammar:E => T E1

E1 => [ '+' T E1 ]

T => F T1

T1 => [ '*' F T1 ]

F => id | '(' E ')'

This is the same grammaras on slides 34-36, sowe know it's LL(1).

241-437 Compilers: topDown/5 47

Generated Parser

void E() // E => T E1{ T(); E1(); }

void E1() // E1 => ['+' T E1 ]{ if (currToken == '+') { match('+'); T(); E1(); }}

use rule []-1

This is C code for"currToken in FIRST_SEQ(+)"

241-437 Compilers: topDown/5 48

void T() // T => F T1{ F(); T1(); }

void T1() // T1 => ['*' F T1 ]{ if (currToken == '*') { match('*'); F(); T1(); }}

rule []-1

This is C code for"currToken in FIRST_SEQ(*)"

241-437 Compilers: topDown/5 49

void F() // F => id | '(' E ')'{ if (currToken == ID) match(ID); else if (currToken == '(') { match('('); E(); match(')'): } else error();}

241-437 Compilers: topDown/5 50

Parsing "a + b * c"

E

T E1

F T1 + T E1

id

a * F T1id

b

F T1

id

c

a + b * c

input

241-437 Compilers: topDown/5 51

Optimizations

• It's possible to combine grammar rules and/or parse functions, in order to simplify the compiler.

• For example, we can combine:– E and E1– T and T1

241-437 Compilers: topDown/5 52

Translation Example 2

• The previous LL(1) grammar can be expressed using *:E => T ( '+' T )*

T => F ( '*' F )*

F => id | '(' E ')'

same as before

241-437 Compilers: topDown/5 53

Generated Parser

• void E() // E => T ('+' T)*{ T(); while (currToken == '+') { match('+'); T(); }}

void T() // T => F ('*' F)*{ F(); while (currToken == '*') { match('*'); F(); }}

rule *-1

rule *-1

241-437 Compilers: topDown/5 54

void F() // F => id | '(' E ')'{ if (currToken == ID) match(ID); else if (currToken == '(') { match('('); E(); match(')'): } else error();}

same as before

241-437 Compilers: topDown/5 55

Parsing "a + b * c" Again

E

T

F

+ T

id

a

* F

id

b

F

id

c

done inside theE() loop

done inside theT() loop

241-437 Compilers: topDown/5 56

3. The Expressions Language Parser

• Is this grammar LL(1)?

Stats => ( [ Stat ] \n )*

Stat => let ID = Expr | Expr

Expr => Term ( (+ | - ) Term )*

Term => Fact ( (* | / ) Fact ) *

Fact => '(' Expr ')' | Int | ID

241-437 Compilers: topDown/5 57

3.1. FIRST and FOLLOW Sets

• First(Stats) = {let, (, Int, Id, \n, }• First(Stat) = {let, (, Int, Id}• First(Expr) = {(, Int, Id}• First(Term) = {(, Int, Id}• First(Fact) = {(, Int, Id}

• Follow(Stats) = {$}Follow(Stats) = {$}• Follow(Stat) = {\n}Follow(Stat) = {\n}• Follow(Expr) = {\n}Follow(Expr) = {\n}• Follow(Term) = {+, -, \n}Follow(Term) = {+, -, \n}• Follow(Fact) = {*, /, +,-,\n}Follow(Fact) = {*, /, +,-,\n}

241-437 Compilers: topDown/5 58

3.2. PREDICT Sets

• Production Predict DisjointStats => ( [ Stat ] \n )* {let,(,Int,Id,\n,$} Yes

Stat => let ID = Expr {let} Yes

Stat => Expr {(,Int,Id}

Expr => Term ( (+ | - ) Term )* {(,Int,Id} Yes

Term => Fact ( (* | / ) Fact ) * {(,Int,Id} Yes

Fact => '(' Expr ')' {(}Yes

Fact => Int {Int}

Fact => Id {Id}

241-437 Compilers: topDown/5 59

3.3. exprParse0.c

• exprParse0.c is a recursive descent parser generated from the expressions grammar.

• It reads in an expressions program file.

• It's output is a print-out of parse function calls.

241-437 Compilers: topDown/5 60

An Expressions Program (test1.txt)

5 + 6

let x = 2

3 + ( (x*y)/2) // comments

// y

let x = 5

let y = x /0

// comments

241-437 Compilers: topDown/5 61

Usage> gcc -Wall -o exprParse0 exprParse0.c> ./exprParse0 < test1.txt 1: stats< 2: stat<expr<term<fact<num(5) >>'+' term<fact<num(6) >>>> 3: stat<'let' var(x) '=' expr<term<fact<num(2) >>>> 4: stat<expr<term<fact<num(3) >>'+' term<fact<'('

expr<term<fact<'(' expr<term> 5: 6: stat<'let' var(x) '=' expr<term<fact<num(5) >>>> 7: stat<'let' var(y) '=' expr<term<fact<var(x) >'/'

fact<num(0) >>>> 8: 9: 10: >'eof'

241-437 Compilers: topDown/5 62

exprParse0.c Callgraphlexical parser(like exprTokens.c)

generated fromthe grammar

241-437 Compilers: topDown/5 63

Standard Token Functions

// globals (first used in exprToken.c)Token currToken;char tokString[MAX_IDLEN];int tokStrLen = 0;int currTokValue;

int lineNum = 1; // no. of lines read in

void nextToken(void){ currToken = scanner(); }

continued

241-437 Compilers: topDown/5 64

void match(Token expected){ if(currToken == expected){ printToken(); // produces the parser's output if(currToken != SCANEOF) currToken = scanner(); } else printf("Expected %s, found %s on line %d\n", tokSyms[expected], tokSyms[currToken],lineNum);} // end of match()

continued

241-437 Compilers: topDown/5 65

void printToken(void){ if (currToken == ID) printf("%s(%s) ", tokSyms[currToken], tokString);

// show token string else if (currToken == INT) printf("%s(%d) ", tokSyms[currToken], currTokValue); // show value else if (currToken == NEWLINE) printf("%s%2d: ", tokSyms[currToken], lineNum); // print newline token else printf("'%s' ", tokSyms[currToken]); // other tokens} // end of printToken()

241-437 Compilers: topDown/5 66

Syntax Error Reporting

void syntax_error(Token tok){ printf("\nSyntax error at \'%s\'

on line %d\n", tokSyms[tok], lineNum); exit(1);}

241-437 Compilers: topDown/5 67

main()

int main(void){ printf("%2d: ", lineNum); nextToken(); statements(); match(SCANEOF); printf("\n\n"); return 0;}

function forstart symbol

check that programis finished at eof

241-437 Compilers: topDown/5 68

Parsing Functions

void statements(void)// Stats => ( [ Stat ] '\n' )* { printf("stats<"); while (currToken != SCANEOF) { if (currToken != NEWLINE) statement(); match(NEWLINE); } printf(">");} // end of statements()

rule *-3

rule []-2

241-437 Compilers: topDown/5 69

void statement(void)// Stat => ( 'let' ID '=' Expr ) | Expr{ printf("stat<"); if (currToken == LET) { match(LET); match(ID); match(ASSIGNOP); expression(); } else if ((currToken == LPAREN) ||

(currToken == INT) || (currToken == ID)) expression(); else error(); printf(">");} // end of statement()

Complicated, butit can be optimized with some 'tricks'

241-437 Compilers: topDown/5 70

void expression(void)// Expr => Term ( ( '+' | '-' ) Term )*{ printf("expr<"); term(); while((currToken == PLUSOP) ||

(currToken == MINUSOP)) { if (currToken == PLUSOP)

match(PLUSOP); else if (currToken == MINUSOP) match(MINUSOP);

else error(); term(); } printf(">");} // end of expression()

rule *-1

Version 1

241-437 Compilers: topDown/5 71

void expression(void)// Expr => Term ( ( '+' | '-' ) Term )*{ printf("expr<"); term(); while((currToken == PLUSOP) ||

(currToken == MINUSOP)) { match(currToken); term(); } printf(">");} // end of expression()

Version 2: simplified | code

Shorter, but alsoharder tounderstand!

241-437 Compilers: topDown/5 72

void term(void)// Term => Fact ( ('*' | '/' ) Fact )*{ printf("term<"); factor(); while((currToken == MULTOP) || (currToken == DIVOP)) { if (currToken == MULTOP)

match(MULTOP); else if (currToken == DIVOP) match(DIVOP);

else error(); factor(); } printf(">");} // end of term()

rule *-1

Version 1

241-437 Compilers: topDown/5 73

void term(void)// Term => Fact ( ('*' | '/' ) Fact )*{ printf("term<"); factor(); while((currToken == MULTOP) || (currToken == DIVOP)) { match(currToken); factor(); } printf(">");} // end of term()

Version 2: simplified | code

Shorter, but alsoharder tounderstand!

241-437 Compilers: topDown/5 74

void factor(void)// Fact => '(' Expr ')' | INT | ID{ printf("fact<"); if(currToken == LPAREN) { match(LPAREN); expression(); match(RPAREN); } else if(currToken == INT) match(INT); else if (currToken == ID) match(ID); else syntax_error(currToken); printf(">");} // end of factor()

241-437 Compilers: topDown/5 75

4. LL(1) Parse Tables• The format of a parse table:

– T[non-term][term]

A

non-

term

inal

s

bterminals

a production A => with b PREDICT(A=>)

241-437 Compilers: topDown/5 76

Other Data Structures

• Sequence of input tokens (ending with $).• A parse stack to hold nonterminals and

terminals that are being processed.

$E

pushpop

241-437 Compilers: topDown/5 77

push($); push(start_symbol); currToken = scanner();do X = pop(stack); if (X is a terminal or $) { if (X == currToken) currToken = scanner(); else error(); }

else // X is a non-terminal

if (T[X][currToken] == X => Y1 Y2 ...Ym )

push(Ym); ... push (Y1); else error(); while (X != $);

The Parsing Algorithm

like match()

241-437 Compilers: topDown/5 78

4.1. Table Parsing Example

• Use the LL(1) grammar:E => T E1

E1 => '+' T E1 | T => F T1

T1 => '*' F T1 | F => id | '(' E ')'

241-437 Compilers: topDown/5 79

NT/TNT/T ++ ** (( )) IDID $$

EE 11 11

E1E1 22 33

TT 44 44

T1T1 66 55 66 66

FF 88 77

ProductionProduction PredictPredict

1: E => T E11: E => T E1 {(,id}{(,id}

2: E1 => + T E12: E1 => + T E1 {+}{+}

3: E1 => 3: E1 => {$,)}{$,)}

4: T => F T14: T => F T1 {(,id}{(,id}

5: T1 => * F T15: T1 => * F T1 {*}{*}

6: T1 => 6: T1 => {+,$,)}{+,$,)}

7: F => id7: F => id {id}{id}

8: F => ( E )8: F => ( E ) {(}{(}

Parse Table Generation

241-437 Compilers: topDown/5 80

Parsing "a + b * c $"

StackStack InputInput ActionAction$E$E a+b*c$a+b*c$ E => T E1 E => T E1

$E1 T$E1 T "" T => F T1 T => F T1

$E1 T1 F$E1 T1 F "" F => idF => id

$E1 T1 id$E1 T1 id "" matchmatch

$E1 T1$E1 T1 +b*c$+b*c$ T1 => T1 =>

$E1$E1 "" E1 => + T E1E1 => + T E1

$E1 T+$E1 T+ "" matchmatch

$E1 T$E1 T b*c$b*c$ T => F T1T => F T1

StackStack InputInput ActionAction$E1 T1 F$E1 T1 F "" F => idF => id

$E1 T1 id$E1 T1 id "" matchmatch

$E1 T1 $E1 T1 *c$*c$ T1 => * F T1 T1 => * F T1

$E1 T1 F *$E1 T1 F * "" matchmatch

$E1 T1 F$E1 T1 F c$c$ F => idF => id

$E1 T1 id$E1 T1 id "" matchmatch

$E1 T1 $E1 T1 $$ T1 => T1 =>

$E1 $E1 "" E1 =>E1 =>

$$ "" SuccessSuccess!!

241-437 Compilers: topDown/5 81

5. Making a Grammar LL(1)

• Not all context free grammars are LL(1).

• We can tell if a grammar is not LL(1) by looking at its PREDICT sets– for a LL(1) grammar, the PREDICT sets for a

non-terminal will be disjoint

241-437 Compilers: topDown/5 82

ExampleProductionProduction PredictPredict

E => E + TE => E + T = FIRST(E) = {(,id}= FIRST(E) = {(,id}

E => TE => T = FIRST(T) = {(,id}= FIRST(T) = {(,id}

T => T * FT => T * F = FIRST(T) = {(,id}= FIRST(T) = {(,id}

T => FT => F = FIRST(F) = {(,id}= FIRST(F) = {(,id}

F => idF => id = {id}= {id}

F => ( E )F => ( E ) = {(}= {(}

•FIRST(F) = {(,id}

•FIRST(T) = {(,id}

•FIRST(E) = {(,id}

•FOLLOW(E) = {$,),+}

•FOLLOW(T) = {+,$,),*}

•FOLLOW(F) = {+,$,),*}

E and T are problems since their PREDICT sets are not disjoint.

241-437 Compilers: topDown/5 83

Example of Disjoint Problem

• Input "5 + b"• There are two productions to choose from:

E => E + T

E => T

• Which should be chosen by looking only at the current token "5"?

241-437 Compilers: topDown/5 84

5.1. From non-LL(1) to LL(1)

• There are two main techniques for converting a non-LL(1) grammar to LL(1).– but they don't work for every grammar

• 1. Left Factoring– e.g. used on A => B a C D | B a C E

• 2. Transforming left recursion to right recursion– e.g. used on E => E + T | T

241-437 Compilers: topDown/5 85

5.2. Left Factoring

• S => a B | a C– to see the problem try choosing a production to

parse "a" in "andrew"

• Change S to:

S => a S1

S1 => B | C– now there is no difficult choice

241-437 Compilers: topDown/5 86

• In general:

A => n

becomes

A => A1A1 => n

241-437 Compilers: topDown/5 87

5.3. Why is Left Recursion a Problem?

• Grammar:A => A b

A => b

• The input is "bbbb".• Using only the current token, "b", which

production should be used?

241-437 Compilers: topDown/5 88

Remove Left Recursion

A => A 1 | A 2 | … | 1 | 2 | …

becomes

A => 1 A1 | 2 A1 | …

A1 => 1 A1 | 2 A1 | … |

• he left recursion is changed to right recursion in the new A1 rule.

241-437 Compilers: topDown/5 89

Example Translation

• The left recursive grammar:A => A b | b

becomes

A => b A1

A1 => b A1 | • Try parsing the input string "bbbb" using

only the current token "b".

241-437 Compilers: topDown/5 90

Fixing the E Grammar

• The folowing E grammar is not LL(1):E => E + T | T

T => T * F | F

F => id | ( E )

• Try parsing "5 + b"

continued

241-437 Compilers: topDown/5 91

• Eliminate left recursion in E and T:E => T E1

E1 => + T E1 | T => F T1

T1 => * F T1 | F => id | ( E )

• This version of the E grammar is LL(1), and we've been using it for most of our examples.

241-437 Compilers: topDown/5 92

5.4. Non-Immediate Left Recursion

• Ex: A1 => A2 a | b

A2 => A1 c | A2 d

• Convert to immediate left recursion– replace A1 in A2 productions by A1’s definition:

A1 => A2 a | b

A2 => A2 a c | b c | A2 d

• Now eliminate left recursion in A2:

A1 => A2 a | b

A2 => b c A3

A3 => a c A3 | d A3 |

A1 A2

241-437 Compilers: topDown/5 93

Example

A => B c | d

B => C f | B f

C => A e | g

• Replace C in B's production by C's defn: B => A e f | g f | B f

• Replace A in B's production by A's defn:B => B c e f | d e f | g f | B f

A

C

B

241-437 Compilers: topDown/5 94

• Now grammar is:A => B c | d

B => B c e f | d e f | g f | B f

C => A e | g

• Get rid of left recursion in B:A => B c | d

B => d e f B1 | g f B1

B1 => c e f B1 | f B1 | C => A e | g

If A is the startsymbol, then theC production isnever called, socan be deleted.

241-437 Compilers: topDown/5 95

6. Error Recovery in LL Parsing

• Simple answer: – when there's an error, print a message and exit

• Better error recovery:– 1. insert the expected token and continue

• this approach can cause non-termination

– 2. keep deleting tokens until the parser gets a token in the FOLLOW set for the production that went wrong• see example on next slide

241-437 Compilers: topDown/5 96

void E()

{

if (currToken in FIRST(T)) { // error checking

T(); E1(); // FIRST(T) == {(,ID} }

else { // error reporting and recovery

printf("Expecting one of FIRST(T)");

while (currToken not in FOLLOW(E)) // FOLLOW(E) == {),$}

currToken = scanner(); // skip input

}

} // end of E()

Example: E→T E1 from slide 29

241-437 Compilers: topDown/5 97

void E()

{ if ((currToken == LPAREN) || (currToken == ID))

{

T(); E1(); }

else {

printf("Expecting ( or id"); while ( (currToken != RPAREN) && (currToken != SCANEOF))

currToken = scanner();

}

} // end of E()

C Code

top related