14. april 2003 quantum mechanics on the large scale banff, alberta 1 relaxation and decoherence in...

Post on 20-Dec-2015

216 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

1

Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling

Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling

Ulrich WeissInstitute for Theoretical Physics

University of Stuttgart

H. Saleur (USCLA)A. Fubini (Florence)H. Baur (Stuttgart)

Quantum impurity models (spin-boson, Kondo, Schmid, BSG, ....) Dynamics From weak to strong tunneling

Quantum relaxation Decoherence

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

2

solvent

donor acceptor

Electron transfer (ET):

bath dynamics

dissipationdecoherence

dynamicse-

tunneling

biological electron transportmolecular electronicsquantum dotsmolecular wirescharge transport in nanotubes

classical rate theoryMarcus theory of ET activationless ET inverted regimenonadiabatic ETadiabatic ET

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

3

Spin-boson model with ultracold atoms:Recati et al. 2002

a b

bV

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

4

System

Heat bath TIBS HHHH

Physical baths: Phonons Conduction electrons (Fermi liquid) 1d electrons (Luttinger liquid) BCS quasiparticles Electromagn env. (circuits, leads) Nuclear spins Solvent Electromagnetic modes

Spectral density of the coupling:

sJ )0(

Global system:

s

> 1 super-Ohmic

= 1 Ohmic

< 1 sub-Ohmic

phonons (d > 1)

e-h excitations

RC transmission line

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

5

Truncated double well:TSS:

stochastic force:

driven TSS:

)()( 2221

221

21

T21

2

xmtxcH m

p

zzx 0)( Tt

0

1 )]sin()cos()2/)[coth(J()0()( titTdt T

Spin-boson Hamiltonian:

)(t stochastic force

T

T

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

6

Anisotropic Kondo model

)(21

||41

,,

,FK

ccccJccJckcvH zkk

k

conduction band

spin polarizationconserved

spin flipscattering

Correspondence with spin-boson model:

)(cos K2

c

T

J

2K )/21( K

)4/arctan()( ||||K JJ

universal in the regime

1|1|||;1/ ||c KJJ

ferromagnetic Kondo regime

antiferromagn. Kondo regime

)1(0|| KJ

)1(0|| KJ

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

7

Schmid model: particle in a tilted cosine potential

TB limit nn

nnn

n aantaaH

])([- )h.c.( 21

1S21

S

Current-biased Josephson junction (charge-phase duality) Impurity scattering in 1d quantum wire Point contact tunneling between quantum Hall edges

Boundary sine-Gordon model Exact selfduality in the Ohmic scaling limit Scaling function for transport and noise at T=0 is known in analytic form

A. Schmid, Phys. Rev. Lett. 51, 1506 (1983)P.Fendley, A.W.W. Ludwig, and H. Saleur, Phys. Rev. B 52, 8934 (1995)

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

8

Density matrix:

Global system: |)()(|)( ttptW kkk k Reduced description: )(tr)( B tWt partial trace

time-local interactions time-nonlocal interactions

reduced dynamics: )(tfull dynamics: W(t)

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

9

m

j

j

iiji

l

j

m

ijij

l

j

j

iijijijlm ttQuvttQvvttQuuqq

2

1

1 1 12

1

1

)'()''()(exp]',[F

Tight-binding model:1nP

nP

1nP

'q

q

1v

1u1u

1v

charges 1ju 1jv

nvnutPj ji in ;:)(0

Influence functional:

Absorption and emission of energy according to detailed balance

)()/( tQTitQ

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

10

Keldysh contour

nvnui ij j ;

Laplace representation in the limit : 0

)(,oncontributi rate cluster eirreducibl n

2u 1mu mu

2v1v 3v lv2lv

1u

1lv

q

q

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

11

Ohmic scaling limit:

c2)( KJ

Pair interaction between tunneling transitions:

sgn(t)

2Tt)sinh(

Tln2)()()( c

iKtQitQtQ

])sgn()ln(2 c

0

tKitKT

Kondo scale: T2

)1(K

1T11

KK

c

K

K

K

S)(K1S1

1

2

KK

c

K

K

Spectral density:

at fixed Kondo scale ST K)sin(2

TSS model

Schmid model

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

12

LP

RPRL

LR

q

´q

N=5:N=2:

1;;11

j

j

kkjj p charges:

scaling limit: ])(exp[]exp[2

2

1

1

12

12 kjk

m

j

j

kjj

m

jjm ttQpKi

F

friction noise (Gaussian filter)

phase factor noise integral

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

13

Incoherent tunneling:

golden rule limit: )(22 p

is probability for transfer of energy tofrom

the bath)( p

12

c

2

21 )(4

)(:0

K

c

T

K

K

;0;K)2(2

:012

cc

2

K

T

{ }

0

)(1)(

0

1 e)sin(d)sin(t)cos(d)cos()( tQtQ ttKetKp

phase factor noise integral noise integralphase factor

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

14

-

- -

-

+ c.c. =

T/e + c.c.

-

-

-+ c.c. =

T/e + c.c.

-

-

- -+ c.c. =

T/e + c.c.

= T/2e -

--

-

Order :4

:)(1

:)(2

-

)(1

/T)(1 e

)(2

/T2)(2 e

(1)

(2)

(3)

(4)

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

15

Noise integrals: 0T

irred0

2

1c12 )ln(2exp)()(

l

ijjiijll KI

D

12

1cos

l

j jjp

12

1sin

l

j jjp

Formidable relations between the variousnoise integrals of same order l

Up-hill partial rates are zero

Scaling property sign same have all if)()tan()( jll pIKlI

0, n general!

particular!

__

2 3 12 l22 l l21

22 l 12 l21

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

16

Results:

Only minimal number of transitions contribute to the rate )( 2nn O

contributescancelled

Schmid model:

All rates can be reconstructed from the known mobility n nn

Knowledge of all statistical fluctuations (full probability distribution)

TSS model:

Exact relations between rates of the Schmid and TSS model

nn

n Kn )(sin4)1(~ 21

H. Saleur and U.Weiss, Phys. Rev. B 63, 201302(R) (2001)

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

17

mK

m

vmK

KmKm

m)22(

23

1 ])1([

])2cos(1)[(

!

1

2~

22222 1e1d

2Re~ KKKKiK vzzvzz

z

z

i

C

Weak-tunneling expansion

Integral representation

Re(z)

Im(z)C

K/v

H. Baur, A. Fubini, and U.Weiss, cond-mat/0211046

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

18

K021

0 )(~

Kb

12

0

)(2

~;~~

nn

nnn vKb

Strong-tunneling expansion

The case K<1:

:131 K

])[()(

])[(

!

1)()(

11

21

21

121

K

KK

nn nn

n

nKdKb

:31K )()]([sin2)( 2

11

2 KdnKb nKK

n

Leading asymptotic term:

:0

K/v

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

19

mK

mm vKc )2/2(

1

)(2

~

The case K>1:

])1([

)sin(]sin[)(2

!

)1()(

123

1

mK

mm

mKc

K

Kp

Kp

Kmm

m

Strong-tunneling expansion

K/v

pKintegerp

10

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

20

weak tunnelinglarge bias

strong tunnelingsmall bias

10 K

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

21

weak tunnelingsmall bias

strong tunnelinglarge bias

1K

14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta

22

Decoherence 21K

0

decdec

nn

21

31 K

31K

n

dec

~n 2

1

)]([sin 21

12 nK

K

1221

12 )]([sin

nKK vn

])[()(

])[(

!

1

2 11

21

21

121

0

dec

K

KK

n nn

n

n

Strong-tunneling expansion:

Conjecture: holds in all known special cases

top related