10853_2016_171_moesm1_esm.docx - springer …10.1007... · web viewmorphology and topography the...

Post on 14-May-2018

217 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Characterization of an oxalate-phosphate-amine metal organic framework (OPA-MOF)

exhibiting properties suited for innovative applications in agriculture

Manuela Anstoetz*1, Neeraj Sharma2, Malcolm Clark1,3, and Lachlan H. Yee 1,3

1 School of Environment, Science and Engineering, Southern Cross University, Lismore NSW 2480, Australia

2 School of Chemistry, UNSW Australia, Sydney NSW 2052, Australia3 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University,

Lismore NSW 2480, Australia

* Corresponding author, email: manuela.anstoetz@scu.edu.au

Morphology and Topography

The predominant morphology of both compounds is to form large macroscopic aggregates of

platy to tabular crystallites; the aggregates display a white/clear or pink colour (Fig. 1 a, b);

the colours might indicate a multiphasic precipitate. Individual crystallites (observed under

the optical microscope) in OPA-MOF (I) range from 200x200x20 to 80x80x10 µm for platy

crystallites, and 200x400x20 to 80x200x10 µm for tabular crystallites (Fig. 1 c), while

crystallites in OPA-MOF (II) are generally small plates, with sizes around 50x50x5 µm (Fig.

1 d). The aggregates form different habits, however, with compound (I) forming both sphere-

like (“Bucky-balls”), and massive aggregates where crystallites are arranged as radial bundles

(Fig. 1 a). Compound (II) forms predominantly massive aggregates from fine platy

crystallites (Fig. 1 d).

SI-Fig. 1 - Stereo micrographs of OPA-MOF compounds (I, a,c) and (II b, d) aggregates (a, b) of OPA-MOFs forming white or pink coloured masses (a, b); individual platy crystallites of 200 µm lengths for OPA-MOF (I; c) and very fine platy crystallites of 50 µm lengths for OPA-MOF (II; d); scale bars are 1mm (a), 5 mm (b), and 200 µm (c, d).

Heat induced decomposition of OPA-MOF compounds (I) and (II)

SI-Fig. 2 Synchrotron PXRD patterns of OPA-MOF compounds (I) and (II) for heat decomposition at 550 K (I) and 600 K (II) showing the complete decomposition of the compound (I) at 550 K, and the temperature stable phase remaining in compound (II) at 600 K; peaks at 8.19 and 5.89 Å appear to correspond to the secondary phase identified in the compound, while the peak at 6.93Å appears to be related to the secondary phase in this compound.

Crystal structure and refinement details

SI-Table 1 A - Crystal structure and refinement detailsCompound (I) Compound (II)

Composition C8Fe8N16O52P8 C8Fe8N16O52P8

Crystal system and space group Orthorhombic Pccm Orthorhombic PccmTemperature (K) 173(2) 173(2)a, b, c (Å) 10.150(2), 11.770(2), 12.510(3) 10.170(2), 11.886(2) 12.533(3)Z 1 1V (Å3) 1494.5(5) 1515.0(5)Data collectionRadiation type Synchrotron, 0.71023 Synchrotron, 0.71023Crystal colour/shape Transparent prism Transparent prismhkl range -13 < h < 13

-15 < k < 15-16 < l < 16

-12 < h < 12-15 < k < 15-16 < l < 16

range 2.65 < < 27.92 2.64 < < 27.92No. of measured reflections 1882 1834No. of reflections with I > 2(I) 1769 1650RefinementNo. of parameters 120 109Rall 4.86 % 7.72%2 1.103 1.101

SI-Table 1 B - Crystal and Refinement detailsCrystal structure Compound (I) Compound (II)Fe(1) position x = 0.05953(7), y = 0.27325(6), z = 0 x = 0.05610(7), y = 0.27263(6), z = 0Fe(1) isotropic ADP 0.0100(2) 0.0235(3)Fe(2) position x = 0.22791(7), y = 0, z = 0.25 x = 0.22712(11), y = 0, z = 0.25Fe(2) isotropic ADP 0.0090(2) 0.0235(3)P(1) position x = 0, y = 0.20132(11), z = 0.25 x = 0, y = 0.20015(15), z = 0.25P(1) isotropic ADP 0.0091(3) 0.0220(4)P(2) position x = 0.28617(12), y = 0.08772(11), z =

0x = -0.28233(19), y = -0.08809(15), z = 0

P(2) isotropic ADP 0.0097(3) 0.0222(4)O(1) position x = 0.0432(3), y = 0.2776(2), z =

0.1574(2)x = 0.0418(5), y = 0.2760(3), z = 0.1571(3)

O(1) isotropic ADP 0.0171(6) 0.0352(10)O(2) position x = -0.0560(4), y = 0.1343(4), 0 x = -0.0608(8), y = 0.1370(6), 0O(2) isotropic ADP 0.0192(8) 0.0446(17)O(3) position x = -0.1059(4), y = 0.3836(3), z = 0 x = -0.1067(6), y = 0.3844(5), z = 0 –

O5O(3) isotropic ADP 0.0165(8) 0.0346(13)O(4) position x = 0.2342(3), y= 0.0243(3), z =

0.0970(2)x = -0.2373(5), y= -0.0240(4), z = -0.0968(3)

O(4) isotropic ADP 0.0195(6) 0.0353(10) – O3O(5) position x = 0.2373(4), y = 0.2106(3), z = 0 x = 0.2345(7), y = 0.2207(5), z = 0O(5) isotropic ADP 0.0194(8) 0.0401(15)O(6) position x = 0.1144(3), y = -0.1264(2), z =

0.2128(2)x = -0.1147(4), y = -0.1257(4), z = -0.2145(3)

O(6) isotropic ADP 0.0186(6) 0.0338(9)O(7) position x = 0.4381(4), y = 0.0921(4), z = 0 x = -0.4360(6), y = -0.0959(6), z = 0O(7) isotropic ADP 0.0193(8) 0.0379(14)O(8) position x = 0.3899(3), y = -0.1132(2), z =

0.2403(2)x = -0.3908(4), y = -0.1127(4), z = -0.2396(2)

O(8) isotropic ADP 0.0163(6) 0.0352(10)O(9) position x = 0.1507(4), y = 0.4306(3), z = 0 x = 0.1499(6), y = 0.4300(5), z = 0O(9) isotropic ADP 0.0136(7) 0.0136(7)C(1) position x = -0.0756(5), y = 0.4863(5), z = 0 x = -0.0739(9), y = 0.4874(7), z = 0C(1) isotropic ADP 0.0146(10) 0.0310(17)C(2) position x = 0.5, y = -0.0657(4), z = 0.25 x = -0.5, y = -0.0653(7), z = -0.25C(2) isotropic ADP 0.0132(10) 0.0291(16)N(1) position x = 0.110(2), y = 0.5, z = 0.25 x = 0.089(2), y = 0.5, z = 0.25N(1) isotropic ADP 0.165(10) 0.131(7)N(2) position x = 0.3313(15), y = -0.3510(9), z =

0.2979(17)x = -0.312(2), y = 0.3440(16), z = -0.2832(17)

N(2) isotropic ADP 0.222(10) 0.174(7)N(3) position x = 0.6509(14), y = 0.2422(16), z = 0 x = -0.620(6), y = -0.262(5), z = 0N(3) isotropic ADP 0.243(16) 0.38(3)

top related