1 collision avoidance systems: computing controllers which prevent collisions by adam cataldo...

Post on 15-Jan-2016

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Collision Avoidance Systems:Computing Controllers which Prevent Collisions

By Adam CataldoAdvisor: Edward Lee

Committee: Shankar Sastry, Pravin Varaiya, Karl Hedrick

PhD Qualifying Exam

UC Berkeley

December 6, 2004

Cataldo 2

Talk Outline

• Motivation and Problem Statement

• Collision Avoidance Background– Potential Field Methods– Reachability-Based Methods

• Research Thrusts– Continuous-Time Methods– Discrete-Time Methods

Cataldo 3

Motivation—Soft Walls

• Enforce no-fly zones using on-board avionics

• A collision occurs if the aircraft enters a no-fly zone

Cataldo 4

The Research Question

• For what systems can I compute a collision avoidance controller?– Correct by construction– Analytic

System Model,Collision Set

Control Law,Safe Initial States

Cataldo 5

Collision Avoidance Problem(Continuous Time)

000 )(

)(),(),(,)(

Xptx

tdtutxtftx

RUu U

RDd

RRnx

nT RTtx

d

Xu

)(

,

,t

thatso and find 0

R

Cataldo 6

Collision Avoidance Problem(Discrete Time)

00 )(

)(),(),(,)1(

ptx

tdtutxtftx

ZUu

ZDd

ZRnx

nT RTtx

d

Xu

)(

,

,t

thatso and find 0

R

Cataldo 7

Potential Field Methods(Rimon & Koditschek, Khatib)

• Provide analytic solutions, derived from a virtual potential field

• No disturbance is allowed

• Dynamics must be holonomic

Oussama Khatib: Real-time Obstacle Avoidance for Manipulators and Mobile Robots

Reachability-Based Avoidance(Mitchell, Tomlin)

0)0(

)(),(),()(

px

tdtutxftx

],0[ sUu

],0[ sDd

],0[ snx R

compact

0)( pgpT nRTtx

stumBp

B

s

ns

)(

],,0[,,,,

such that find

0

R

)()(],0[tumtd

t

Cataldo 9

Hamilton Jacobi Equation(Mitchell, Tomlin)

T

0),( psVpB ns R

n

DeUv

pstpgpV

evpfptVp

ptVt

R

],0,[ ),(),0(

,0),,(),(minmax,0min),(

Cataldo 10

etutxftxtVtx

tu

De),(),()(,ˆ)(/min

maximize )(let

Computing Safe Control laws(Mitchell, Tomlin)

gf ,

0ˆ)/(

until ),(in approx.

Vt

ptV

VpV ˆ)/(,ˆ

offline

online

Cataldo 11

Applied to Soft Walls(Master’s Report)

• Works for a many systems

• Storage requirements may be prohibitive– 40 Mb for the Soft Walls example

• Cannot analyze qualitative system behavior under numerical control law– switching surfaces, equilibrium points, etc.

Cataldo 12

Analytic Computation:Soft Walls Example

)()(

)(sin

)(cos

)(

)(

)(

tdtu

t

t

t

ty

tx

1)()()(),(),( 22 tytxttytx

)(tx

)(ty)(t

2

5.1

],[)(

],[)(

e

ev

eetd

vvtu

Cataldo 13

Change of Variables

)(

)(sin)()()(

)(cos)(

tr

ttdtut

ttr

1)()(),( trttr

)(t

)(tr

0)(,0

0))(sin(,

)(or 0))(sin(,

)(),(,

t

tv

ttv

ttrtk

Cataldo 14

Lyapunov Function

)(),( ttrV

),2/()()(sin)(2)(

)2/,[)()(sin)(2)(

2/|)(|)(

)(),(22

22

tkkttkrtr

tkkttkrtr

ttr

ttrV

ek /2

safety implies

1)(),( ttrV

Cataldo 15

A Sufficient Condition(Leitmann)

00 )(

)(),(),(,)(

ptx

tdtutxtftx

RUu

RDd RRnx

)(,)( txtktu

)(,)( txtmtd

nT R

Ttx

Dm

Ukn

n

)(

,:,t

thatprove :given

RRR

RR

Cataldo 16

A Sufficient Condition(Leitmann)

• Find a Lyapunov function over an open set encircling the collision set which ensures against collisions

),( ,

,,

in increasing )(,

,:

,tx such that,

: find

0

qsVptV

AqSpst

ttxtV

Dm

S

SV

n

RR

RRnS R

nT R

nA R

One Possible Extension

1

121, pppT nRR

)(),(),(),()(

)()(

2122

211

tdtutxtxftx

txftx

R compact

)(

)(

Dtd

Utu

)(maxarg

continuous ,

21*

21

12

pfp

ff

np

R

*2212

*2*2212

21

,,,maxminarg

,,,minmaxarg

),()(let

ppevppf

ppppevppf

ppktu

DeUv

DeUv

Cataldo 18

One Possible Extension

)(infinf)(),( 121 xtxtxV

td

)(),(),(),()(

)()(

2122

211

tdtutxtxftx

txftx

)(),( if safe 0201 txtxV

Cataldo 20

Bisimilarity and Collision Avoidance

21

00

,)(obs

)(

)(),(),()1(

tx

Xtx

tdtutxftx

11

12

unsafe statedisable this transition

• When is the system bisimilar to an finite-state transition system (FTS)?

• If the system is bisimilar to an FTS, can I compute a control law from a controller on the FTS?

Example: Controllable Linear Systems (Tabuada, Pappas)

00 )(

)()()1(

Xtx

tButAxtx

W

ZRmu ZRnx

WT

Ttx

k

W )( always

such that find

)()( txktu

semilinear sets on W

),...,(

),...,,(

),...,,(min

1

1

mAAspanW

bAAbbspan

bAAbbspank

ik

ii

in

iii

LTL formula

Cataldo 22

The Result(Tabuada, Pappas)

• There exists a bisimilar FTS for observations given as semilinear subsets of W

• A feedback strategy k which enforces the LTL constraint exists iff a controller for the FTS which enforces the constraint exists

Ttx

TX

W )( always

,,0

mnk RR :

Cataldo 23

Bounded Control Inputs

• If we want to extend this for disturbances, we will need to be able to bound the control inputs

• Adding states won’t work; we may lose controllability

)()(

)(

00

0

)1(

)1(tu

I

B

ty

txA

ty

tx

1

0,

00

10 :example BA

Cataldo 24

Research Questions

• When we have bounds on the control input, when can we find a bisimilar FTS?

• For systems with disturbances, when can we find a bisimilar FTS?

• For nonlinear systems with disturbances, when can we find a bisimilar FTS?

Cataldo 25

Where is this Going?

• Build a toolkit of collision avoidance methods

• These methods must give correct by construct control strategies

• We should be able to analyze the control strategies

Cataldo 26

Conclusions

• I plan to develop new collision avoidance methods

• Many approaches to collision avoidance have been developed, but methods which produce analytic control laws have limited scope

• In the end, we would like to automate controller design for problems such as Soft Walls

Cataldo 27

Acknowledgements

• Aaron Ames

• Alex Kurzhanski

• Xiaojun Liu

• Eleftherios Matsikoudis

• Jonathan Sprinkle

• Haiyang Zheng

• Janie Zhou

Cataldo 28

Additional Slides

Cataldo 29

Global Existence and Uniqueness(Sontag)

• Given the initial value problem

• There exists a unique global solution if– f is measurable in t for fixed x(t)– f is Lipschitz continuous in x(t) for fixed t– |f| bounded by a locally integrable function in t for

fixed x

nnf

ptx

txtftx

RRR

:

)(

)(,)(

00

Cataldo 30

Potential Functions(Rimon & Koditschek)

T

T

goalq

000 )(),(

)()()(),()()(

Xtqtq

tutqgtqtqftqtqM

)(),()()( tqtqdtqVtu

goalt

qtq

Ttqtt

dVX

)(lim

and )(,

such that and ,, find

0

0

Holonomic Constraints(Murray, Li, Sastry)

• Given k particles, a holonomic constraint is an equation

• For m constraints, dynamics depend on n=3k-m parameters

• Obtain dynamics through Lagrange's equation

0),...,( ,: 13 k

krrgg RR

)()(),()(

)(),()(

,:

tutqtqtq

Ltqtq

tq

L

dt

d

q n

RR

Cataldo 32

Information Patterns(Mitchell, Tomlin)

• In computing the unsafe set, we assume the disturbance player knows all past and current control values (and the initial state)

• The control player knows nothing (except the initial state)

• This is conservative• In computing a control law, we assume the

control player will at least know the current state

Cataldo 33

Relation to Isaacs Equation• Isaacs Equation:

• W(t,p) gives the optimal cost at time t

(terminal value only)

n

DeUv

pstpgpW

evpfptWp

ptWt

R

],0,[ ),(),0(

,0),,(),(minmax),(

0)(,,,,0minmax),(

umuptgptWmu

causal} |:{ mm

Cataldo 34

Relation to Isaacs Equation• Isaacs Equation:

• The min with 0 term gives the minimum cost over [t,0]

n

DeUv

pstpgpV

evpfptVp

ptVt

R

],0,[ ),(),0(

,0),,(),(minmax,0min),(

0)(,,,,minminmax),(]0,[

umuptgptVtmu

causal} |:{ mm

Viscosity Solutions(Crandall, Evans, Lions)

0),(H ),(

minimum local a is ),)(()2

0),(H ),(

maximum local a is ),)(()1

allfor if

0),(H ),(

forsolution viscositya is 0

ptt

hp,pt

t

h

pthV

ptt

hp,pt

t

h

pthV

Ch

ptt

Vp,pt

t

V

CV

n

n

RRR

RRR

Cataldo 36

Convergence of V

• At each p, V can only decrease as t decreases

• If g bounded below, then V converges as

• It may be the case that all values are negative, that is, no safe states

n

DeUv

pstpgpV

evpfptVp

ptVt

R

],0,[ ),(),0(

,0),,(),(minmax,0min),(

t

Cataldo 37

Applying Optimal Control:Soft Walls Example

)(),( ttrV

)(),( ttrb

safeunsafe

1

)(),()(),()(),(ˆapply ttrkttrbttrk

1

Cataldo 38

Lyapunov-Like Condition(Leitmann)

• Given a C1 Lyapunov function V:S, A is avoidable under control law k if

• Note that this can be generalized when V is piecewise C1

AA

AA

ttApSpt

ptVptV

,,),(

when),,(),( )1

R

D,),( when

,0)),,(,,(),(),(

)2

eSpt

etpkptfptVt

ptVp

Cataldo 39

Lyapunov-Like Condition(Leitmann)

• Let {Yi} be a countable partition of S, and let {Wi} be a collection of open supersets of {Yi}, that is, WiYi

1Y

3Y

2Y

SR

Cataldo 40

Lyapunov-Like Condition(Leitmann)

• Given a continuous Lyapunov function V:S, A is avoidable under control k if

AA

AA

ttApSpt

ptVptV

,,),(

when),,(),( )1

R

D,),( when

,0)),,(,,(),(),(

and , with ),( )2 1

eYtp

etpktpftpVt

tpV

VVWCV

i

ipi

YYiiiii

R

Cataldo 41

Transition System

mapn observatio :obs)5

states initial ofset )4

nsobservatio ofset )3

relationn transitio)2

states ofset )1

obs,,,,

0

0

Q

QQ

QQ

Q

QQT

00**

10 ,,..., :run dinitialize QqQqqr

)(obs,run dinitialize L(T) :language ** rwrOw

Cataldo 42

Bisimulation

RpppqQp

pqRqq

qqRqq

QqRqqQq

TTQQR

QQTQQT

),(,,

,),( 3)

)(obs)(obs),( 2)

),(, 1)

if to from simulation a is

obs,,,, obs,,,,

2122222

11121

221121

2,02211,01

1221

22,022211,0111

)()(

to and to from ssimulation:

2121

122121

TLTLTT

TTTTTT

Cataldo 43

Linear Temporal Logic (LTL)

• Given a set P of predicates, the following are LTL formula:

211211

21

U,,,

are so then formula, LTL are , if

,,,

Ppfalsetrue

Cataldo 44

Semilinear Sets

• The complement, finite intersection, finite union, or of semilinear sets is a semilinear set

• The following are semilinear sets

},{ ~ ,,

where0~T

QQ

R

ba

bxax

n

n

Cataldo 45

Computing Safe Control Laws(Tabuada, Pappas)

LTL Formula Buchi Automaton

Finite Transition System

Discrete-Time System

Finite-StateSupervisor

Hybrid,Discrete-Time

State-FeedbackControl Law

top related