05 di pierro

Post on 12-Apr-2017

438 Views

Category:

Science

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

YOUR LOGO

Construction and Application

of a Multi-parental High Density

SNP Linkage Map of Apple Erica A. Di Pierro, Luca Gianfranceschi, Johannes W. Kruisselbrink, Marco C.A.M. Bink, Roeland E. Voorrips,

Mario Di Guardo, Herma Koehorst van Putten, Sara Longhi, Luca Bianco, Michela Troggio, Diego Micheletti,

Riccardo Velasco, Larisa Gustavsson, Stefano Tartarini, Giulia Pagliarani, Hélène Muranty, François Laurens,

Eric van de Weg

YOUR LOGO

WHY THE NEED FOR A VERY RELIABLE GENETIC MAP IN APPLE?

YOUR LOGO

Very final goal

THE NEED FOR A VERY RELIABLE GENETIC MAP IN APPLE

YOUR LOGO

➧Reliable and consistent assessment of correlation trait ↔ molecular marker

• Discovery & Characterization

• Validation– Reproducibility on multiple families, pedigrees

NEEDS FOR SUCCESSFUL MAB STRATEGIES

YOUR LOGO

➧Reliable and consistent assessment of correlation trait ↔ molecular marker

• Discovery & Characterization

• Validation– Reproducibility on multiple families, pedigrees

NEEDS FOR SUCCESSFUL MAB STRATEGIES

➧Power and accurateness of QTL mapping and PBA approaches

YOUR LOGO

➧Reliable and consistent assessment of correlation trait ↔ molecular marker

• Discovery & Characterization

• Validation– Reproducibility on multiple families, pedigrees

NEEDS FOR SUCCESSFUL MAB STRATEGIES

➧Power and accurateness of QTL mapping and PBA analysis

• Correct linkage group (LG) assignment• Correct markers succession within LG

YOUR LOGO

➧Approaches reducing size data sets

• High-density SNP arrays

• Computer memory limitations, increase computation time

• Genotyping by SNP haplotypes

– Use as multi-allelic markers, more informative than single di-allelic SNPs

NEEDS FOR SUCCESSFUL MAB STRATEGIES

YOUR LOGO

➧Approaches reducing size data sets

• High-density SNP arrays

• Computer memory limitations, increase computation time

• Genotyping by SNP haplotypes

– Use as multi-allelic markers, more informative than single di-allelic SNPs

NEEDS FOR SUCCESSFUL MAB STRATEGIES

YOUR LOGO

➧NEED

THE NEED FOR A VERY RELIABLE GENETIC MAP IN APPLE

YOUR LOGO

➧NEED

➧APPROACH

THE NEED FOR A VERY RELIABLE GENETIC MAP IN APPLE

YOUR LOGO

1. HIGH DENSITY SNPs ARRAY:

Illumina Infinium 20 K SNPs array Luca Bianco et al. 2014

FUNDAMENTAL TOOLS

YOUR LOGO

1. HIGH DENSITY SNPs ARRAY:

Illumina Infinium 20 K SNPs array Luca Bianco et al. 2014

2. RELIABLE CALLS OF INFORMATIVE SNP

ASSIsT software Mario Di Guardo et al.

FUNDAMENTAL TOOLS

YOUR LOGO

1. HIGH DENSITY SNPs ARRAY:

Illumina Infinium 20 K SNPs array Luca Bianco et al. 2014

2. RELIABLE CALLS OF INFORMATIVE SNP

ASSIsT software Mario Di Guardo et al.

3. RELIABLE SINGLE FAMILY MAPS FOR 21 FAMILIES (ca. 1600 individuals)

FUNDAMENTAL TOOLS

YOUR LOGO

1. SNPs ORGANIZED in Focal Points (FPs)• Exploiting FPs design introduced in Chagné et al. 2012

and Bianco et al. 2014

STRATEGY STEPS

YOUR LOGO

1. SNPs ORGANIZED in Focal Points (FPs)• Exploiting FPs design introduced in Chagné et al. 2012

and Bianco et al. 2014

2. INNOVATIVE MAPPING APPROACH• FPs strategy• Backcross strategy in outcrossing species and data

integration across families prior to map construction

STRATEGY STEPS

YOUR LOGO

1. SNPs ORGANIZED in Focal Points (FPs)• Exploiting FPs design introduced in Chagné et al. 2012

and Bianco et al. 2014

2. INNOVATIVE MAPPING APPROACH• FPs strategy• Backcross strategy in outcrossing species and data

integration across families prior to map construction

3. SOFTWARE DEVELOPMENT FOR DATA INTEGRATION AND CONVERSION (FP-mapper by J. Kruisselbrink)

STRATEGY STEPS

YOUR LOGO

➧Focal Points design

Regions of max 10kb having up to 10 SNPs

➝ Suitable for building stable multi-allelic SNP-haplotypes

➝ Distribution across genome

1. SNPs ORGANIZED IN FPs

YOUR LOGO

➧Focal Points design

Regions of max 10kb having up to 10 SNPs

➝ Suitable for building stable multi-allelic SNP-haplotypes

➝ Distribution across genome

1. SNPs ORGANIZED IN FPs

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

YOUR LOGO

➧Focal Points design

Regions of max 10kb having up to 10 SNPs

➝ Suitable for building stable multi-allelic SNP-haplotypes

➝ Distribution across genome

1. SNPs ORGANIZED IN FPs

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

YOUR LOGO

➧Focal Points design

Regions of max 10kb having up to 10 SNPs

➝ Suitable for building stable multi-allelic SNP-haplotypes

➝ Distribution across genome

1. SNPs ORGANIZED IN FPs

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

YOUR LOGO

➧Focal Points design

Regions of max 10kb having up to 10 SNPs

➝ Suitable for building stable multi-allelic SNP-haplotypes

➝ Distribution across genome

1. SNPs ORGANIZED IN FPs

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

YOUR LOGO

2. NEW MAPPING APPROACH: FPs STRATEGY

➧FPs strategy

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

FP-mapper by J. Kruisselbrink

YOUR LOGO

2. NEW MAPPING APPROACH: FPs STRATEGY

➧FPs strategy

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

FP-mapper by J. Kruisselbrink

• Stable SNP haplotypes

YOUR LOGO

2. NEW MAPPING APPROACH: FPs STRATEGY

➧FPs strategy

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

FP-mapper by J. Kruisselbrink

• Stable SNP haplotypes• Haplotype data integration

bi-parental genotypes split into single parent datasets

YOUR LOGO

2. NEW MAPPING APPROACH: FPs STRATEGY

➧FPs strategy

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

FP-mapper by J. Kruisselbrink

• Stable SNP haplotypes• Haplotype data integration

bi-parental genotypes split into single parent datasets

• Missing values reduction

YOUR LOGO

2. NEW MAPPING APPROACH: FPs STRATEGY

➧FPs strategy

SNP name FP segr phase segr phase segr phase

SNP_028768 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa <aaxab> {-0} -- aa ab ab -- aa ab ab

SNP_028769 FP_60 <abxaa> {1-} ab aa ab ab aa ab ab ab -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

SNP_028770 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <aaxab> {-0} aa ab ab ab ab ab ab aa -- -- -- -- -- -- -- --

SNP_028771 FP_60 <abxab> {00} ab -- bb -- ab bb ab ab <abxaa> {0-} aa -- -- aa ab aa -- aa <aaxab> {-0} aa aa ab ab ab aa ab ab

SNP_028772 FP_60 <abxab> {00} ab aa bb bb ab bb ab ab <abxaa> {0-} aa aa aa aa ab aa aa aa <abxab> {10} ab ab ab ab bb aa ab ab

SNP_028773 FP_60 <aaxab> {-0} aa aa ab -- ab ab ab aa -- -- -- -- -- -- -- -- <abxab> {10} -- -- ab ab bb aa ab ab

Pop 1 Pop 2 Pop 3

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

FP-mapper by J. Kruisselbrink

• Stable SNP haplotypes• Haplotype data integration

bi-parental genotypes split into single parent datasets

• Missing values reduction

YOUR LOGO

2.NEW MAPPING APPROACH: BACKCROSS STRATEGY

➧Backcross strategy and data integration across families (FP-mapper by J. Kruisselbrink)

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

Segr Pop 1 Pop 2 Pop 3

YOUR LOGO

2.NEW MAPPING APPROACH: BACKCROSS STRATEGY

➧Backcross strategy and data integration across families (FP-mapper by J. Kruisselbrink)

FP_60 unique marker

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

Segr Pop 1 Pop 2 Pop 3

Merging single parent datasets in a single backcross-type population ➝ Twice the individual of the original population ➝ 3200 meiosis

YOUR LOGO

2.NEW MAPPING APPROACH: BACKCROSS STRATEGY

➧Backcross strategy and data integration across families (FP-mapper by J. Kruisselbrink)

FP_60 unique marker

Female meiosis ab aa ab ab aa ab ab ab aa aa aa aa ab aa aa aa ab ab aa aa ab aa aa aa

Male meiosis aa aa ab ab ab ab ab aa aa ab ab ab ab ab ab aa aa aa ab ab ab aa ab ab

Segr Pop 1 Pop 2 Pop 3

Merging single parent datasets in a single backcross-type population ➝ Twice the individual of the original population ➝ 3200 meiosis

YOUR LOGO

ADVANTAGES

YOUR LOGO

ADVANTAGES

YOUR LOGO

Families Individuals:

Focal Points (FPs):Total SNPs: Average SNPs/FP: Average mv%/FP:

Average distance: cMmax d. (LG6) : cMmin d. (many LGs): cMTotal Map Length: cM

21~1600

~3000~15000

~5~40

0.403.300.00

~1267

HIGH DENSITY FPs GENETIC MAPJoin Map (V4.1)

YOUR LOGO

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

HIGH DENSITY FPs GENETIC MAP Join Map (V4.1)

YOUR LOGO

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

HIGH DENSITY FPs GENETIC MAP Join Map (V4.1)

63 cM

112 cM

YOUR LOGO

LG 3

Join Map (V4.1) Test for alternative positions (1000 iterations)

0%

50%

100%

o ROBUSTNESS OF MARKERS POSITIONSQUALITY OF THE MAP

THE PROBABILITY OF EACH MARKER (FP) TO BE ASSIGNED TO ITS POSITION IN THE MAP

YOUR LOGO

Join Map (V4.1) Estimated Plausible Positions

0%

50%

100%

THE PROBABILITY OF EACH MARKER (FP) TO BE ASSIGNED TO ITS POSITION IN THE MAP

0%

50%

100%

LG 3

QUALITY OF THE MAPo ROBUSTNESS OF MARKERS POSITIONS

YOUR LOGO

Join Map (V4.1) Estimated Plausible Positions

0%

50%

100%

THE PROBABILITY OF EACH MARKER (FP) TO BE ASSIGNED TO ITS POSITION IN THE MAP

LG 3

0%

50%

100%

LG3_FP_1140

o ROBUSTNESS OF MARKERS POSITIONSQUALITY OF THE MAP

YOUR LOGO

0%

50%

100%

THE PROBABILITY OF EACH MARKER (FP) TO BE ASSIGNED TO ITS POSITION IN THE MAP

Join Map (V4.1) Test for alternative positions (1000 iterations)

LG 3

QUALITY OF THE MAPo ROBUSTNESS OF MARKERS POSITIONS

YOUR LOGO

IMPACTS

YOUR LOGO

IMPACTS

• MARKERS TO BE MAPPED ON THE CORRECT LG

• MARKER POSITIONING through FPs VALIDATION

YOUR LOGO

IMPACTS

• Special approach elaborated by Voorrips et al. see POSTER SESSION

YOUR LOGO

BABAB BABAB

BABAB BBBAB

Hap

loty

pe

24

BABAAAABAA

Hap

loty

pe

12

Hap

loty

pe

13

10 SNP markers

HAPLOTYPINGSpecial approach elaborated by Voorrips et al. see POSTER SESSION

Joint genotypes of multiple successive SNPs

• single multi-allelic marker

YOUR LOGO

BABAB BABAB

BABAB BBBAB

Hap

loty

pe

24

BABAAAABAA

Hap

loty

pe

12

Hap

loty

pe

13

LG1HaploBlock 2

10 SNP markers

HAPLOTYPINGSpecial approach elaborated by Voorrips et al. see POSTER SESSION

Joint genotypes of multiple successive SNP

• single multi-allelic marker

• converted into haploblocks

YOUR LOGO

Joint genotypes of multiple successive SNP

• single multi-allelic marker

• converted into haploblocks

• allow exploring entire allelic variation

BABAB BABAB

BABAB BBBAB

Hap

loty

pe

24

BABAAAABAA

Hap

loty

pe

12

Hap

loty

pe

13

LG1HaploBlock 2

3 haplotype variants

10 SNP markers

HAPLOTYPINGSpecial approach elaborated by Voorrips et al. see POSTER SESSION

YOUR LOGO

➧ Flow of haplotype alleles along pedigrees

– LG1 apple, region flanking the Vf gene for scab resistance

– Pedigree 1 commercial cv:

• Galarina Vf-resistant

HAPLOTYPINGSpecial approach elaborated by Voorrips et al. see POSTER SESSION

YOUR LOGO

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

HAPLOTYPE FLOW

YOUR LOGO

HAPLOTYPE FLOW

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

YOUR LOGO

HAPLOTYPE FLOW

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

YOUR LOGO

HAPLOTYPE FLOW

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

YOUR LOGO

HAPLOTYPE FLOW

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13 came from F2-26829:Vf-resistant

selection, 2nd generation from M.foribunda 821

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

YOUR LOGO

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

4 55 213 42 411 12

11 54 13

12 13 5 4

13 2

13 5

HAPLOTYPE FLOW

➧ Single HaploBlocklocus / marker

• 5 generations

• Flow of Haplotype 13 came from F2-26829:Vf-resistant

selection, 2nd generation from M.foribunda 821

• Flow of Haplotype 5 came from Cox

YOUR LOGO

HAPLOTYPE FLOW

➧ Multiple HaploBlocks

• Consistent flow

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

YOUR LOGO

HAPLOTYPE FLOW

➧ Multiple HaploBlocks

• Consistent flow

• Tracing recombination events

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

YOUR LOGO

HAPLOTYPE FLOW

➧ Multiple HaploBlocks

• Consistent flow

• Tracing recombination events

• Consistent results validated with SSR-Hidras data

Delicious

11 128 42 23 2

GoldenDel

2 42 42 43 2

F2_26829-2-2

13 49 58 73 3

Jonathan

5 24 24 23 2

Cox

4 54 412 42 3

PRI14-126

4 134 94 82 3

KidsOrRed

11 58 42 43 3

PRI612-1

12 134 92 82 2

Gala

5 44 44 23 3

Florina

13 29 28 *2 2

Galarina

13 59 48 42 3

YOUR LOGO

CONCLUSION

ACCURATE AND RELIABLE ORDER OF THE HIGHEST POSSIBLE NUMBER OF MARKER LOCI

YOUR LOGO

CONCLUSION

ACCURATE AND RELIABLE ORDER OF THE HIGHEST POSSIBLE NUMBER OF MARKER LOCI

ACKNOWLEDGEMENTS

Eric Van de WegJohannes KruisselbrinkHerma KoehorstSara Longhi

Stefano Tartarini

Giulia Pagliarani

Luca Gianfranceschi

Mario Di GuardoDiego MichelettiLuca BiancoMichela Troggio

Hélène MurantyLarisa Gustavsson

YOUR LOGO

THANKS FOR YOUR

ATTENTION !

YOUR LOGO

Roeland E. Voorrips

Marco C.A.M. Bink

Johannes W. Kruisselbrink

Herma J.J. Koehorst - van Putten

W. Eric Van de Weg

POSTER SESSION

YOUR LOGO

ADVANTAGES

➧Advantages of the FPs strategies

• Reduced number of missing values

• Increased robustness of marker scores

• Complete exploitation of genetic information

• Fully informative markers

YOUR LOGO

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10 LG11 LG12 LG13 LG14 LG15 LG16 LG17

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

CORE DATASET in Black• at least 800 meiosis present• 25% of present data

in Violet• at least 300 meiosis present• 10% of present data

THE FINAL INTEGRATED GENETIC MAP

YOUR LOGO

➧Advantages of the backcross strategy

NEW MAPPING APPROACH

Standard outcrossers integrated map

• Integration of the 2 parental maps• Integration across families

Integration of DATASETS prior to map construction

Novel approach

VS

YOUR LOGO 63

HAPLOBLOCKS

HB 1

HB 2

HB 3

HB 4

HB 5

HB 6

HB 7

HB 8

Galarina Florina Gala • Tightly linked sets of SNPs

• Recombination occurs onlybetween haploblock and NOT WITHIN

multi-allelic markersbased on correctlyassigned haplotypes

Voorrips et al. POSTER SESSION

LG1

YOUR LOGO

➧Approaches reducing size data sets• High-density SNP arrays• Computer memory limitations, increase computation time• Genotyping by SNP haplotypes

– Use as multi-allelic markers, more informative than single di-allelic SNPs

NEEDS FOR SUCCESSFUL MAB STRATEGIES

Complexity of Apple Genome ➾ Apple Physical Map V2 with uncertainties

YOUR LOGO

NEXT STEP

➧PUBLICATION of the Integrated Genetic Map

➧ORIGINAL DATA will become publicly AVAILABLE on the FB-database

➝ Allow USERS to FURTHER IMPROVE REGION of INTEREST by

further DATA SCRUTINIZING

adding data (e.g. additional families)

➝ MOST RELIABLE marker-loci ORDER for the HIGHEST POSSIBLE NUMBER of MARKERS

top related