ammonia recovery (2)

Upload: wagus-ginanjar

Post on 02-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Ammonia Recovery (2)

    1/136

    1

    Modeling and Simulation

    Example-1

    Ammonia Recovery

  • 7/27/2019 Ammonia Recovery (2)

    2/136

    2

  • 7/27/2019 Ammonia Recovery (2)

    3/136

    3

  • 7/27/2019 Ammonia Recovery (2)

    4/136

    4

    Hysys environment

    Stat new simulation

  • 7/27/2019 Ammonia Recovery (2)

    5/136

    5

    Simulation basis manager:

    Enter primary simulation data likecomponent,

    thermodynamic package, or

    reactions.

  • 7/27/2019 Ammonia Recovery (2)

    6/136

    6

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 J

    P=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

    We want to know what are the composition and flow rate of the

    vapor and liquid stream?

  • 7/27/2019 Ammonia Recovery (2)

    7/136

    7

    Simulation procedure

    Step one:

    Define components

    Step two: Choose thermodynamic

    model

    Step three:

    Build simulation flow

    diagram

    Step four: Enter stream data

    Step five:

    Enter unit operation data

  • 7/27/2019 Ammonia Recovery (2)

    8/136

    8

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 J

    P=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    9/136

    9

    Simulation procedure

    Step one:

    Define components

    Water

    ammonia

    Step two:

    Choose thermodynamic model SRK

    Step three:

    Build simulation flow diagram

    Step four:

    Enter stream data Feed

    Saturated vapor at P=250 psia

    20 wt% water

    80 wt% Ammonia

    Mass Flow rate: 10000 (lb/hr)

    Step five:

    Enter unit operation data

    Condenser

    Q=-5.8*106 J

    P=0 Psi Expansion valve

    Isentropic process

    P=150 Psi

    Flash

    Adiabatic flash

    P=0 Psi

  • 7/27/2019 Ammonia Recovery (2)

    10/136

    10

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 J

    P=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    11/136

    11

    Starting Simulation

    Add Components

    Define Thermodynamic package

  • 7/27/2019 Ammonia Recovery (2)

    12/136

    12

    Simulation procedure

    Step one:

    Define components

    Water

    ammonia

    Step two:

    Choose thermodynamic model SRK

    Step three:

    Build simulation flow diagram

    Step four:

    Enter stream data Feed

    Saturated vapor at P=250 psia

    20 wt% water

    80 wt% Ammonia

    Mass Flow rate: 10000 (lb/hr)

    Step five:

    Enter unit operation data

    Condenser

    Q=-5.8*106 J

    P=0 Psi

    Expansion valve

    Isentropic process

    P=150 Psi

    Flash

    Adiabatic flash

    P=0 Psi

  • 7/27/2019 Ammonia Recovery (2)

    13/136

    13

    Create new component list

  • 7/27/2019 Ammonia Recovery (2)

    14/136

    14

    Create new component listSearch and add library

    components

    Change the name of

    new component list

  • 7/27/2019 Ammonia Recovery (2)

    15/136

    15

    Write the name of chemical

    Formula of the componentWhen you find it click Add Pure

  • 7/27/2019 Ammonia Recovery (2)

    16/136

    16

  • 7/27/2019 Ammonia Recovery (2)

    17/136

    17

    Write the name of chemical

    Formula of the componentWhen you find it click Add Pure

  • 7/27/2019 Ammonia Recovery (2)

    18/136

    18

    All components were added

  • 7/27/2019 Ammonia Recovery (2)

    19/136

    19

    This step was completed

    Component list view can be closed

  • 7/27/2019 Ammonia Recovery (2)

    20/136

    20

    Simulation procedure

    Step one:

    Define components

    Water

    ammonia

    Step two:

    Choose thermodynamic model SRK

    Step three:

    Build simulation flow diagram

    Step four:

    Enter stream data Feed

    Saturated vapor at P=250 psia

    20 wt% water

    80 wt% Ammonia

    Mass Flow rate: 10000 (lb/hr)

    Step five:

    Enter unit operation data

    Condenser

    Q=-5.8*106 J

    P=0 Psi

    Expansion valve

    Isentropic process

    P=150 Psi

    Flash

    Adiabatic flash P=0 Psi

  • 7/27/2019 Ammonia Recovery (2)

    21/136

    21

    Next step id defining

    thermodynamic fluid package

    Go to the Fluid Package section

  • 7/27/2019 Ammonia Recovery (2)

    22/136

    22

    Click Add to create new fluid package

  • 7/27/2019 Ammonia Recovery (2)

    23/136

    23

    To define Thermodynamic fluid package

    Select if from the list

  • 7/27/2019 Ammonia Recovery (2)

    24/136

    24

    Choose SRK as

    Thermodynamic fluid package

  • 7/27/2019 Ammonia Recovery (2)

    25/136

    25

    Close the Fluid package

  • 7/27/2019 Ammonia Recovery (2)

    26/136

    26

    Components and thermodynamic package were

    defined now process flow diagram can be developed

  • 7/27/2019 Ammonia Recovery (2)

    27/136

    27

    Save your file

  • 7/27/2019 Ammonia Recovery (2)

    28/136

    28

  • 7/27/2019 Ammonia Recovery (2)

    29/136

    29

    Draw simulation flow diagram

  • 7/27/2019 Ammonia Recovery (2)

    30/136

    30

    process flow diagram should e

    developed in Simulation Environment

  • 7/27/2019 Ammonia Recovery (2)

    31/136

    31

    Simulation

    environmentof HYSYS

    Object Palette

  • 7/27/2019 Ammonia Recovery (2)

    32/136

    32

  • 7/27/2019 Ammonia Recovery (2)

    33/136

    33

    Simulation procedure

    Step one:

    Define components

    Water

    ammonia

    Step two:

    Choose thermodynamic model SRK

    Step three:

    Build simulation flow diagram

    Step four:

    Enter stream data Feed

    Saturated vapor at P=250 psia

    20 wt% water

    80 wt% Ammonia

    Mass Flow rate: 10000 (lb/hr)

    Step five:

    Enter unit operation data

    Condenser

    Q=-5.8*106 J

    P=0 Psi Expansion valve

    Isentropic process

    P=150 Psi

    Flash

    Adiabatic flash

    P=0 Psi

  • 7/27/2019 Ammonia Recovery (2)

    34/136

    34

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 JP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    35/136

    35

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 J

    P=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

    1

    2 3

    4

    5

    6

    1, 2, 3, 4, and 5 are material stream

    6 is energy stream

  • 7/27/2019 Ammonia Recovery (2)

    36/136

    36

  • 7/27/2019 Ammonia Recovery (2)

    37/136

    37

  • 7/27/2019 Ammonia Recovery (2)

    38/136

    38

  • 7/27/2019 Ammonia Recovery (2)

    39/136

    39

  • 7/27/2019 Ammonia Recovery (2)

    40/136

    40

  • 7/27/2019 Ammonia Recovery (2)

    41/136

    41

  • 7/27/2019 Ammonia Recovery (2)

    42/136

    42

  • 7/27/2019 Ammonia Recovery (2)

    43/136

    43

  • 7/27/2019 Ammonia Recovery (2)

    44/136

    44

  • 7/27/2019 Ammonia Recovery (2)

    45/136

    45

  • 7/27/2019 Ammonia Recovery (2)

    46/136

    46

  • 7/27/2019 Ammonia Recovery (2)

    47/136

    47

  • 7/27/2019 Ammonia Recovery (2)

    48/136

    48

  • 7/27/2019 Ammonia Recovery (2)

    49/136

    49

  • 7/27/2019 Ammonia Recovery (2)

    50/136

    50

    Input stream data and operatingconditions

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    51/136

    51

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    52/136

    52

    Simulation procedure

    Step one:

    Define components

    Water

    ammonia

    Step two:

    Choose thermodynamic model SRK

    Step three:

    Build simulation flow diagram

    Step four:

    Enter stream data

    Feed

    Saturated vapor at P=250 psia

    20 wt% water

    80 wt% Ammonia

    Mass Flow rate: 10000 (lb/hr)

    Step five:

    Enter unit operation data

    Condenser

    Q=-5.8*106 J

    P=0 Psi

    Expansion valve

    Isentropic process

    P=150 Psi

    Flash

    Adiabatic flash

    P=0 Psi

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    53/136

    53

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    54/136

    54

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    AmmoniaSaturated vapor at 250 psia

    Q=-5.8106 Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    55/136

    55

  • 7/27/2019 Ammonia Recovery (2)

    56/136

    56

  • 7/27/2019 Ammonia Recovery (2)

    57/136

    57

  • 7/27/2019 Ammonia Recovery (2)

    58/136

    58

  • 7/27/2019 Ammonia Recovery (2)

    59/136

    59

  • 7/27/2019 Ammonia Recovery (2)

    60/136

    60

  • 7/27/2019 Ammonia Recovery (2)

    61/136

    61

  • 7/27/2019 Ammonia Recovery (2)

    62/136

    62

  • 7/27/2019 Ammonia Recovery (2)

    63/136

    63

  • 7/27/2019 Ammonia Recovery (2)

    64/136

    64

  • 7/27/2019 Ammonia Recovery (2)

    65/136

    65

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    66/136

    66

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    Ammonia

    Saturated vapor at 250 psia

    Q=-5.8106 Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    67/136

    67

  • 7/27/2019 Ammonia Recovery (2)

    68/136

    68

  • 7/27/2019 Ammonia Recovery (2)

    69/136

    69

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    70/136

    70

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    Ammonia

    Saturated vapor at 250 psia

    Q=-5.8106

    Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    p

  • 7/27/2019 Ammonia Recovery (2)

    71/136

    71

  • 7/27/2019 Ammonia Recovery (2)

    72/136

    72

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    73/136

    73

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    Ammonia

    Saturated vapor at 250 psia

    Q=-5.8106

    Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    p

  • 7/27/2019 Ammonia Recovery (2)

    74/136

    74

    Example 1:

  • 7/27/2019 Ammonia Recovery (2)

    75/136

    75

    Feed

    Flowrate: 10000 lb/hr

    Water: 20 wt%

    Ammonia

    Saturated vapor at 250 psia

    Q=-5.8106

    Btu/hrP=0

    H=0

    P=150 psia

    Expansion valveCondenser Separator

    Vapour

    Liquid

    Feed

    Adiabatic flash

    P=0 psia

    p

    We want to know what are the composition and flow rate of the vapor

    and liquid stream?

  • 7/27/2019 Ammonia Recovery (2)

    76/136

    76

  • 7/27/2019 Ammonia Recovery (2)

    77/136

    77

  • 7/27/2019 Ammonia Recovery (2)

    78/136

    78

  • 7/27/2019 Ammonia Recovery (2)

    79/136

    79

  • 7/27/2019 Ammonia Recovery (2)

    80/136

    80

    S i i i l i

  • 7/27/2019 Ammonia Recovery (2)

    81/136

    81

    Sensitivity analysis

    How does heat recovery in cooler change the

    amount of ammonia recovery in process?

    How does pressure drop in valve change the

    amount of ammonia recovery in process?

  • 7/27/2019 Ammonia Recovery (2)

    82/136

    82

    Change heat recovery (independent variable)

    Check the effect of ammonia recovery (dependent variable)

    Change Pressure drop in valve (independent variable)

    Check the effect of ammonia recovery (dependent variable)

  • 7/27/2019 Ammonia Recovery (2)

    83/136

    83

    Use spreadsheet for user defined

    calculations in hysys

  • 7/27/2019 Ammonia Recovery (2)

    84/136

    84

  • 7/27/2019 Ammonia Recovery (2)

    85/136

    85

    Input variables whichyou want to use for your calculations

  • 7/27/2019 Ammonia Recovery (2)

    86/136

    86

  • 7/27/2019 Ammonia Recovery (2)

    87/136

    87

  • 7/27/2019 Ammonia Recovery (2)

    88/136

    88

  • 7/27/2019 Ammonia Recovery (2)

    89/136

    89

  • 7/27/2019 Ammonia Recovery (2)

    90/136

    90

    Write the formula

  • 7/27/2019 Ammonia Recovery (2)

    91/136

    91

    S iti it l i

  • 7/27/2019 Ammonia Recovery (2)

    92/136

    92

    Sensitivity analysis

    How does heat recovery in cooler change the

    amount of ammonia recovery in process?

    How does pressure drop in valve change the

    amount of ammonia recovery in process?

  • 7/27/2019 Ammonia Recovery (2)

    93/136

    93

    Start case study

  • 7/27/2019 Ammonia Recovery (2)

    94/136

    94

    Change heat recovery (independent variable)

    Check the effect of ammonia recovery (dependent variable)

  • 7/27/2019 Ammonia Recovery (2)

    95/136

    95

    Input variables for case study

  • 7/27/2019 Ammonia Recovery (2)

    96/136

    96

  • 7/27/2019 Ammonia Recovery (2)

    97/136

    97

  • 7/27/2019 Ammonia Recovery (2)

    98/136

    98

  • 7/27/2019 Ammonia Recovery (2)

    99/136

    99

  • 7/27/2019 Ammonia Recovery (2)

    100/136

    100

    Define the case study

  • 7/27/2019 Ammonia Recovery (2)

    101/136

    101

    Define independent and

    dependent variables

  • 7/27/2019 Ammonia Recovery (2)

    102/136

    102

  • 7/27/2019 Ammonia Recovery (2)

    103/136

    103

    Define the range for independent variable

  • 7/27/2019 Ammonia Recovery (2)

    104/136

    104

  • 7/27/2019 Ammonia Recovery (2)

    105/136

    105

  • 7/27/2019 Ammonia Recovery (2)

    106/136

    106

  • 7/27/2019 Ammonia Recovery (2)

    107/136

    107

  • 7/27/2019 Ammonia Recovery (2)

    108/136

    108

    Sensitivity analysis

  • 7/27/2019 Ammonia Recovery (2)

    109/136

    109

    Sensitivity analysis

    How does heat recovery in cooler change the

    amount of ammonia recovery in process?

    How does pressure drop in valve change the

    amount of ammonia recovery in process?

  • 7/27/2019 Ammonia Recovery (2)

    110/136

    110

    Change Pressure drop in valve (independent variable)

    Check the effect of ammonia recovery (dependent variable)

  • 7/27/2019 Ammonia Recovery (2)

    111/136

    111

  • 7/27/2019 Ammonia Recovery (2)

    112/136

    112

  • 7/27/2019 Ammonia Recovery (2)

    113/136

    113

  • 7/27/2019 Ammonia Recovery (2)

    114/136

    114

  • 7/27/2019 Ammonia Recovery (2)

    115/136

    115

  • 7/27/2019 Ammonia Recovery (2)

    116/136

    116

  • 7/27/2019 Ammonia Recovery (2)

    117/136

    117

  • 7/27/2019 Ammonia Recovery (2)

    118/136

    118

    Creating report in HYSYS

  • 7/27/2019 Ammonia Recovery (2)

    119/136

    119

    Creating report in HYSYS

    When process simulation is completed usuallyit is necessary to create a report which can

    contain information about

    Process Process flow streams

    Material streams and Energy streams

    Unit operations

  • 7/27/2019 Ammonia Recovery (2)

    120/136

    120

    We want to have specific unit sets for report

    Like:

    Mass flowrate in lb/hr,Pressure in psia

  • 7/27/2019 Ammonia Recovery (2)

    121/136

    121

  • 7/27/2019 Ammonia Recovery (2)

    122/136

    122

  • 7/27/2019 Ammonia Recovery (2)

    123/136

    123

  • 7/27/2019 Ammonia Recovery (2)

    124/136

    124

  • 7/27/2019 Ammonia Recovery (2)

    125/136

    125

  • 7/27/2019 Ammonia Recovery (2)

    126/136

    126

  • 7/27/2019 Ammonia Recovery (2)

    127/136

    127

  • 7/27/2019 Ammonia Recovery (2)

    128/136

    128

  • 7/27/2019 Ammonia Recovery (2)

    129/136

    129

  • 7/27/2019 Ammonia Recovery (2)

    130/136

    130

  • 7/27/2019 Ammonia Recovery (2)

    131/136

    131

  • 7/27/2019 Ammonia Recovery (2)

    132/136

    132

  • 7/27/2019 Ammonia Recovery (2)

    133/136

    133

  • 7/27/2019 Ammonia Recovery (2)

    134/136

    134

  • 7/27/2019 Ammonia Recovery (2)

    135/136

    135

  • 7/27/2019 Ammonia Recovery (2)

    136/136