amer hamzah, h., gee, w. j., raithby, p. r., teat, s. j., mahon, m. … · harina amer hamzah,...

37
Amer Hamzah, H., Gee, W. J., Raithby, P. R., Teat, S. J., Mahon, M. F., & Burrows, A. D. (2018). Post‐Synthetic Mannich Chemistry on Metal‐Organic Frameworks: System‐Specific Reactivity and Functionality‐Triggered Dissolution. Chemistry - A European Journal, 24(43), 11094-11102. https://doi.org/10.1002/chem.201801419 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1002/chem.201801419 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201801419 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Upload: others

Post on 13-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Amer Hamzah, H., Gee, W. J., Raithby, P. R., Teat, S. J., Mahon, M.F., & Burrows, A. D. (2018). Post‐Synthetic Mannich Chemistry onMetal‐Organic Frameworks: System‐Specific Reactivity andFunctionality‐Triggered Dissolution. Chemistry - A European Journal,24(43), 11094-11102. https://doi.org/10.1002/chem.201801419

    Publisher's PDF, also known as Version of recordLicense (if available):CC BYLink to published version (if available):10.1002/chem.201801419

    Link to publication record in Explore Bristol ResearchPDF-document

    This is the final published version of the article (version of record). It first appeared online via Wiley athttps://onlinelibrary.wiley.com/doi/full/10.1002/chem.201801419 . Please refer to any applicable terms of use ofthe publisher.

    University of Bristol - Explore Bristol ResearchGeneral rights

    This document is made available in accordance with publisher policies. Please cite only thepublished version using the reference above. Full terms of use are available:http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

    https://doi.org/10.1002/chem.201801419https://doi.org/10.1002/chem.201801419https://research-information.bris.ac.uk/en/publications/fa15e82d-3b40-47cb-8787-cfe534e08eefhttps://research-information.bris.ac.uk/en/publications/fa15e82d-3b40-47cb-8787-cfe534e08eef

  • Supporting Information

    Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks:System-Specific Reactivity and Functionality-Triggered Dissolution

    Harina Amer Hamzah,[a] William J. Gee,[a, b] Paul R. Raithby,[a] Simon J. Teat,[c]

    Mary F. Mahon,*[a] and Andrew D. Burrows*[a]

    chem_201801419_sm_miscellaneous_information.pdf

    http://orcid.org/0000-0002-9268-4408http://orcid.org/0000-0002-9268-4408http://orcid.org/0000-0002-9268-4408

  • S1

    Post-syntheticMannichchemistryonmetal-organicframeworks:system-specificreactivityandfunctionality-

    triggereddissolution

    HarinaAmerHamzah,WilliamJ.Gee,PaulR.Raithby,SimonJ.Teat,MaryF.MahonandAndrewD.Burrows

    Supplementaryinformation

    1. Generalexperimentaldetails S22. MOFstructures S33. Synthesesof1-3a S34. Thermogravimetricanalyses S135. Gasadsorptionstudieson1-3and3a S136. Mercuryuptakestudieson3a S147. Synthesesof4-7 S158. Crystalstructuredetermination S309. References S35

  • S2

    1. GeneralexperimentaldetailsAll reagents and solvents were purchased from commercial sources and used withoutfurtherpurification.PowderX-raydiffraction(PXRD)patternsforallsampleswererecordedonaBrukerAXSD8AdvancediffractometerwithcopperKαradiation(λ=1.5406Å)at298K.Thebeamslitwassetto1mm,detectorslitsetto0.2mmandanti-scatteringslitsetto1mm.Samplesweredried in ambient conditions and ground using a pestle and mortar. The powders werepackedontoaflatplateandmeasuredwitha2θrangeof5–60°.Thestepsizewas0.024°withthescanspeedsetto0.3sperstep.1HNMRspectrawererecordedonthedigestedMOFsat298KonaBrukerAvance300MHzUltrashieldNMRspectrometer.All 1HNMRspectrawerereferencedtotheresidualprotiopeaksatδ2.50ppmforDMSO-d6withtheexceptionofMIL-68-(In)materials,whichwerereferencedtotheresidualprotiopeaksatδ4.80ppmforD2O.Samplesweredriedat100°Cfor 15minutes prior to digestion. For theUiO-66materials, a typicalMOF digestionwascarriedoutbyadding10mgofacrystallinesampleinto0.4mLofDMSO-d6and0.2mLofastock solution of NH4F in D2O (4.14 M). For the IRMOF and DMOF materials, the MOFdigestionswereeachcarriedoutusingapproximately10mgofcrystallinesamplein0.4mLofDMSO-d6and0.2mLofastocksolutionof0.1mLof35wt%DCl/D2Oin3mLDMSO.FortheMIL-68(In)materials, theMOFdigestionwascarriedoutwithapproximately10mgofcrystalline sample in 0.4mL of D2O and 0.2mL of a stock solution of 0.1mL of 30wt%NaOD/D2O in 3 mL D2O. All cases, the mixtures were sonicated until all solids hadcompletely dissolved. COSY spectrawere used to fully assign the signals for the digestedproducts.Mass spectra was recorded on digested MOF solutions diluted in EtOH, using a BrukermicrOTOF electrospray ionisation time-of-flight (ESI-TOF) mass spectrometer. Atomicemission spectroscopy was carried out by Mr Alan Carver on a Perkin Elmer 3100instrument.FTIRspectrawererecordedonsolidsamplesusingaPerkinElmerSpectrum100spectrometermountedonadiamond/gemplatform.TGA was carried out on the solid samples using a Setaram Setsys Evolution 16/18thermogravimetricanalyser.Thesampleswereheatedfrom30°Cto600°Catarateof20K/minunderaflowofargongas(20mL/min).Atypicalgassorptionmeasurementwascarriedoutbyloadinganapproximately20mgofMeOHrinsedsampleintoapre-weighedsampletube.Thesamplewasthenheatedat120°Cfor12hoursonaBELSORPMini-II(BELJapan)gassorptionanalyser.Thesampletubewasre-weighedtoobtainaconsistentmassoftheactivatedsamplepriortothegasadsorptionmeasurement.Todeterminethespecificsurfacearea,N2sorptionisothermwasrecordedat77K.Thetemperaturewaskeptconstantusingaliquidnitrogenbath.ThespecificsurfaceareawascalculatedbasedontheBrunauer-Emmett-Teller(BET)methodinthep/p0rangeof0.05-0.10.CO2andN2adsorptionisothermswerealsorecordedat273K.TheselectivityofCO2overN2ofthematerialwascalculatedfromthesinglegasisothermsbydividingtheCO2uptakebythatofN2ataspecificpartialpressure(0.1or1.0bar).

  • S3

    2. MOFstructuresThe structures of the parent frameworks for the MOFs used in this study –[Zr6O4(OH)4(bdc)6] (UiO-66),S1 [Zn4O(bdc)3] (IRMOF-1/MOF-5),S2 [Zn2(bdc)2(dabco)] (DMOF-1)S3and[In(OH)(bdc)](MIL-68(In))S4–aredepictedinFigureS1.(a)

    (b)

    (c)

    (d)

    FigureS1.Thestructuresof(a)UiO-66,(b)IRMOF-1,(c)DMOF-1and(d)MIL_68(In).

    3. Synthesesof1-3a3.1 SynthesisofUiO-66-NH2ThesynthesiswasmodifiedfromaprocedurereportedbyGaribayandCohen.S5Inatypicalreaction,H2bdc-NH2 (190mg,1.05mmol)alongwithZrCl4 (243mg,1.05mmol)andDMF(12 mL) were loaded into a Teflon-lined autoclave. The solution was stirred until thereactantshadcompletelydissolved.Theautoclavewasplacedinanovenandheatedat120°Cfor24h.TheresultingyellowpowderwasrinsedandcentrifugedwithMeOH(6000rpmfor15min) to removeunreactedH2bdc-NH2and residualDMF in thepores. Thewashingprocedurewasrepeatedover3dayswiththesolventreplacedevery24h.Finally,theUiO-66-NH2 powder was dried under vacuum at 120 °C for 12 h. Prior to post-syntheticmodificationreactions,UiO-66-NH2waswashedwith1,4-dioxanebycentrifugationover3dayswiththesolventreplacedevery24h.Thepowderwasthenlefttodryunderambientconditions.1HNMR(NH4F/D2O/DMSO-d6):7.56d(1H),7.12s(1H),7.05d(1H).

  • S4

    3.2 SynthesisofUiO-66-NHCH2pyz,1UiO-66-NH2(117mg,ca.0.4mmoleq.ofNH2)andparaformaldehyde(24mg,0.8mmol,2eq.)wereaddedintoaglassvialcontainingmethanol(5mL).Thevialwasplacedinanovenandheatedat50°Cfor24h.Thepowderwasthenwashedwithmethanol(threetimes)viacentrifugation to remove any residual paraformaldehyde in the pores or on the solidsurfaces.Thepowderwassubsequentlytreatedwithpyrazole (54mg,0.8mmol,2eq.) in1,4-dioxaneat80°Cfor24hbeforequenchingthereactionbyrinsingthesamplewithfresh1,4-dioxane.Theproductwassoaked in1,4-dioxanefor3days, replacingthesolventwithfresh solvent every 24 h, before isolation by centrifugation. Prior to characterisation,sampleswerelefttodryinairfor2htoobtainfree-flowingpowders.ThePXRDpatternfor1 isshowninFigureS2,the1HNMRspectrumofdigested1 isshowninFigureS3,theESImassspectrumofdigested1 isshowninFigureS4andtheFTIRspectrumof1 isshowninFigureS5.

    FigureS2.ThePXRDpatternfor1incomparisonwithexperimentalPXRDpatternforUiO-66-NH2

    andthesimulatedpatternforUiO-66.

  • S5

    FigureS3.The1HNMRspectrumof1followingdigestioninNH4F/D2OandDMSO-d6.

    FigureS4.ThenegativeionESImassspectrumof1followingdigestioninNH4F/H2O.

  • S6

    FigureS5.TheFT-IRspectrumof1(red)incomparisontothatofUiO-66-NH2(black).

  • S7

    3.3 SynthesisofUiO-66-NHCH2im,2UiO-66-NH2(117mg,ca.0.4mmoleq.ofNH2)andparaformaldehyde(24mg,0.8mmol,2eq.)wereaddedintoaglassvialcontainingmethanol(5mL).Thevialwasplacedinanovenandheatedat50°Cfor24h.Thepowderwasthenwashedwithmethanol(threetimes)viacentrifugation to remove any residual paraformaldehyde in the pores or on the solidsurfaces.Thepowderwassubsequentlytreatedwithimidazole(54mg,0.8mmol,2eq.)in1,4-dioxaneat80°Cfor24hbeforequenchingthereactionbyrinsingthesamplewithfresh1,4-dioxane.Theproductwassoaked in1,4-dioxanefor3days, replacingthesolventwithfresh solvent every 24 h, before isolation by centrifugation. Prior to characterisation,sampleswerelefttodryinairfor2htoobtainfree-flowingpowders.ThePXRDpatternfor2 is shown inFigureS6, the 1HNMRspectrumofdigested2 is shown inFigure1, theESImassspectrumofdigested2 isshowninFigureS7andtheFTIRspectrumof2 isshowninFigureS8.

    FigureS6.ThePXRDpatternfor2incomparisonwithexperimentalPXRDpatternforUiO-66-NH2

    andthesimulatedpatternforUiO-66.

  • S8

    FigureS7.ThepositiveionESImassspectrumof2followingdigestioninNH4F/H2O.

    FigureS8.TheFT-IRspectrumof2(red)incomparisontothatofUiO-66-NH2(black).

  • S9

    3.4 SynthesisofUiO-66-NHCH2im-SH,3UiO-66-NH2(117mg,ca.0.4mmoleq.ofNH2)andparaformaldehyde(24mg,0.8mmol,2eq.)wereaddedintoaglassvialcontainingmethanol(5mL).Thevialwasplacedinanovenandheatedat50°Cfor24h.Thepowderwasthenwashedwithmethanol(threetimes)viacentrifugation to remove any residual paraformaldehyde in the pores or on the solidsurfaces. The powder was subsequently treated with 2-mercaptoimidazole (80 mg, 0.8mmol,2eq.) in1,4-dioxaneat80°C for24hbeforequenchingthereactionbyrinsingthesamplewithfresh1,4-dioxane.Theproductwassoakedin1,4-dioxanefor3days,replacingthe solvent with fresh solvent every 24 h, before isolation by centrifugation. Prior tocharacterisation,sampleswerelefttodryinairfor2htoobtainfree-flowingpowders.ThePXRDpatternfor3 isshown inFigureS9, the1HNMRspectrumofdigested2 isshown inFigure S10, the ESI mass spectrum of digested 3 is shown in Figure S11 and the FTIRspectrumof2isshowninFigureS12.

    FigureS9.ThePXRDpatternfor3incomparisonwithexperimentalPXRDpatternforUiO-66-NH2

    andthesimulatedpatternforUiO-66.

  • S10

    FigureS10.The1HNMRspectrumof3followingdigestioninNH4F/D2OandDMSO-d6.

    FigureS11.ThenegativeionESImassspectrumof3followingdigestioninNH4F/H2O.

  • S11

    FigureS12.TheFT-IRspectrumof3(red)incomparisontothatofUiO-66-NH2(black).

  • S12

    3.5 SynthesisofUiO-66-NHCH2im-SH,3aUiO-66-NH2(117mg,ca.0.4mmoleq.ofNH2)andparaformaldehyde(24mg,0.8mmol,2eq.)wereaddedintoaglassvialcontainingmethanol(5mL).Thevialwasplacedinanovenandheatedat50°Cfor24h.Thepowderwasthenwashedwithmethanol(threetimes)viacentrifugation to remove any residual paraformaldehyde in the pores or on the solidsurfaces. The powder was subsequently treated with 2-mercaptoimidazole (80 mg, 0.8mmol,2eq.) in1,4-dioxaneat50°C for24hbeforequenchingthereactionbyrinsingthesamplewithfresh1,4-dioxane.Theproductwassoakedin1,4-dioxanefor3days,replacingthe solvent with fresh solvent every 24 h, before isolation by centrifugation. Prior tocharacterisation,sampleswerelefttodryinairfor2htoobtainfree-flowingpowders.The1HNMRspectrumofdigested3aisshowninFigureS13.

    FigureS13.The1HNMRspectrumof3afollowingdigestioninNH4F/D2OandDMSO-d6.

  • S13

    4. ThermogravimetricanalysesThermogravimetricanalysesforUiO-66-NH2andcompounds1-3and3aareshowninFigureS14.

    FigureS14.ThermogravimetricanalysesforUiO-66-NH2andcompounds1-3and3a.

    5. Gasadsorptionstudieson1-3and3aCarbondioxideandnitrogensorptiondataat273KforUiO-66-NH2andcompounds1-3and3aareshowninFiguresS15andS16respectively.

    FigureS15.CarbondioxideadsorptionanddesorptiondataforUiO-66-NH2andcompounds1-3and

    3aat273K.

  • S14

    FigureS16.NitrogenadsorptionanddesorptiondataforUiO-66-NH2andcompounds1-3and3aat

    273K.6. Mercuryuptakestudieson3aPXRDdiffractionpatternsfor3apriortoandfollowingtreatmentwithmercury(II)chlorideareshowninFigureS17.

    FigureS17.ThePXRDpatternfor3apriortoandfollowingtreatmentwithmercury(II)chloridein

    comparisonwiththesimulatedpatternforUiO-66.

  • S15

    7. Synthesesof4-77.1 SynthesisofIRMOF-NHCH2pyz,4IRMOF-3 was synthesised according to a previously reported procedure [1H NMR(DCl/D2O/DMSO-d6): 7.79d (1H), 7.42d (1H), 7.08dd (1H)].S6 In a typical PSM procedure,IRMOF-3crystals(108mg,ca.0.4mmoleq.ofNH2),paraformaldehyde(24mg,0.8mmol,2eq.) and MeOH (32 μL, 0.8 mmol, 2 eq.) were added into a glass vial containing 5 mLtoluene.Thevialwassealed,placed inanovenandheatedat50°Cfor24h.Thecrystalswere then washed with fresh toluene (three times) to remove any residualparaformaldehyde and MeOH in the pores or on the solid surfaces. The crystals weresubsequently treatedwithpyrazole (54mg,0.8mmol,2eq.) in tolueneat80 °C for24hbeforequenchingthereactionbyrinsingthecrystalswithfreshtoluene.Thecrystalsweresoaked in toluene for 3 days, replacing the solvent with fresh solvent every 24 h. Thecrystals were then isolated via filtration. The crystals were stored under an inertatmosphere to avoiddegradation. ThePXRDpattern for4 is shown in Figure S18, the 1HNMRspectrumofdigested4isshowninFigureS19,theESImassspectrumfordigested4isshowninFigureS20andtheFTIRspectrumof4isshowninFigureS21.

    FigureS18.ThePXRDpatternfor4incomparisonwithexperimentalandsimulatedPXRDpatterns

    forIRMOF-3.

  • S16

    FigureS19.The1HNMRspectrumof4followingdigestioninDCl/D2OandDMSO-d6.

    FigureS20.ThenegativeionESImassspectrumof4followingdigestioninNH4F/H2O.

  • S17

    FigureS21.TheFT-IRspectrumof4(red)incomparisontothatofIRMOF-3(black).

  • S18

    7.2 Synthesisof[Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]·2C7H8,5DMOF-1-NH2 was synthesised according to a previously reported procedure [1H NMR(DCl/D2O/DMSO-d6): 7.82d (2H), 7.48d (2H), 7.13dd (2H), 3.60s (12H)].S7 In a typical PSMprocedure,DMOF-1-NH2crystals(120mg,ca.0.4mmoleq.ofNH2),paraformaldehyde(24mg, 0.8 mmol, 2 eq.) and MeOH (32 μL, 0.8 mmol, 2 eq.) were added into a glass vialcontaining5mLtoluene.Thevialwassealed,placedinanovenandheatedat50°Cfor24h.The crystals were then washed with fresh toluene (three times) to remove any residualparaformaldehyde and MeOH in the pores or on the solid surfaces. The crystals weresubsequently treatedwithpyrazole (54mg,0.8mmol,2eq.) in tolueneat80 °C for24hbeforequenchingthereactionbyrinsingthecrystalswithfreshtoluene.Thecrystalsweresoaked in toluene for 3 days, replacing the solvent with fresh solvent every 24 h. Thecrystalswerethenisolatedviafiltration.ThePXRDpatternfor5isshowninFigureS22andthesimulatedPXRDpatternfor5isshowninFigureS23.The1HNMRspectrumofdigested5isshowninFigureS24,theESImassspectrumofdigested5isshowninFigureS25andtheFTIRspectrumof5isshowninFigureS26.ThePXRDpatternsforDMOF-1-NH2treatedwithparaformaldehyde,methanol andpyrazole are shown in Figure S27, and the TGA for5 isshowninFigureS28.

    FigureS22.ThePXRDpatternfor5incomparisonwiththatforDMOF-1-NH2.

  • S19

    FigureS23.ThesimulatedPXRDpatternderivedfromthecrystalstructureof5.

    FigureS24.The1HNMRspectrumof5followingdigestioninDCl/D2OandDMSO-d6.Asingletfor

    the12equivalentdabcoprotonsisalsoobservedatδ3.60ppm.

  • S20

    FigureS25.ThenegativeionESImassspectrumof5followingdigestioninNH4F/H2O.

    FigureS26.TheFT-IRspectrumof5(red)incomparisontothatofDMOF-1-NH2(black).

  • S21

    FigureS27.ThePXRDpatternfor5followingtreatmentwithparaformaldehyde,methanoland

    pyrazole.

    FigureS28.ThermogravimetricanalysesforDMOF-1-NH2(black)and5(red).

  • S22

    7.3 SynthesisofDMOF-1-NHCH2im,6In a typical PSM procedure, DMOF-1-NH2 crystals (120 mg, ca. 0.4 mmol eq. of NH2),paraformaldehyde(24mg,0.8mmol,2eq.)andMeOH(32μL,0.8mmol,2eq.)wereaddedintoaglassvialcontaining5mLtoluene.Thevialwassealed,placedinanovenandheatedat50°Cfor24h.Thecrystalswerethenwashedwithfreshtoluene(threetimes)toremoveanyresidualparaformaldehydeandMeOHintheporesoronthesolidsurfaces.Thecrystalsweresubsequentlytreatedwithimidazole(54mg,0.8mmol,2eq.)intolueneat80°Cfor24hbeforequenchingthereactionbyrinsingthecrystalswithfreshtoluene.Thecrystalsweresoakedintoluenefor3days,replacingthesolventwithfreshsolventevery24h.Thecrystalswerethenisolatedviafiltration.ThePXRDpatternfor6isshowninFigureS29,the1HNMRspectrumofdigested6isshowninFigureS30,theESImassspectrumof6isshowninFigureS31andtheFTIRspectrumof6isshowninFigureS32.TheTGAfor6isshowninFigureS33.

    FigureS29.ThePXRDpatternfor6incomparisonwiththatforDMOF-1-NH2.

  • S23

    FigureS30.The1HNMRspectrumof6followingdigestioninDCl/D2OandDMSO-d6.Asingletfor

    the12equivalentdabcoprotonsisalsoobservedatδ3.60ppm.

    FigureS31.ThenegativeionESImassspectrumof6followingdigestioninNH4F/H2O.

  • S24

    FigureS32.TheFT-IRspectrumof6(red)incomparisontothatofDMOF-1-NH2(black).

    FigureS33.ThermogravimetricanalysesforDMOF-1-NH2(black)and6(red).

  • S25

    7.4 AttemptedsynthesisofDMOF-1-NHCH2imSHIn a typical PSM procedure, DMOF-1-NH2 crystals (120 mg, ca. 0.4 mmol eq. of NH2),paraformaldehyde(24mg,0.8mmol,2eq.)andMeOH(32μL,0.8mmol,2eq.)wereaddedintoaglassvialcontaining5mLtoluene.Thevialwassealed,placedinanovenandheatedat50°Cfor24h.Thecrystalswerethenwashedwithfreshtoluene(threetimes)toremoveanyresidualparaformaldehydeandMeOHintheporesoronthesolidsurfaces.Thecrystalsweresubsequentlytreatedwith2-mercaptoimidazole(80mg,0.8mmol,2eq.)intolueneat80°Cfor24hbeforequenchingthereactionbyrinsingthecrystalswithfreshtoluene.Thecrystalsweresoakedintoluenefor3days,replacingthesolventwithfreshsolventevery24h.Thecrystalswerethenisolatedviafiltration.ThePXRDpatternforthereactionproductisshowninFigureS34andthe1HNMRspectrumofdigestedproductisshowninFigureS35.

    FigureS34.ThePXRDpatternfortheproductfromthereactionbetweenDMOF-1-NH2,

    formaldehydeand2-mercaptoimidazoleincomparisonwiththatforDMOF-1-NH2.

    FigureS35.The1HNMRspectrumoffortheproductfromthereactionbetweenDMOF-1-NH2,

    formaldehydeand2-mercaptoimidazolefollowingdigestioninDCl/D2OandDMSO-d6.

  • S26

    7.5 SynthesisofMIL-68(In)-NHCH2OCH3,7MIL-68(In)-NH2 was synthesised according to a previously reported procedure [1H NMR(NaOD/D2O): 7.65d (1H), 7.21s (1H), 7.13d (1H)].S4 In a typical PSMprocedure, crystalsofMIL-68(In)-NH2crystals (124mg,ca.0.4mmoleq.ofNH2)andparaformaldehyde (24mg,0.8mmol,2eq.)wereaddedintoaglassvialcontaining5mLMeOH.Thevialwassealed,placed inanovenandheatedat50 °C for24h.Thecrystalswere thenwashedwith1,4-dioxane(threetimes)viafiltrationtoremoveanyresidualparaformaldehydeandMeOHintheporesoronthesolidsurfaces.Thecrystalsweresubsequentlytreatedwithpyrazole(54mg, 0.8mmol, 2 eq.) in 1,4-dioxane at 80 °C for 24 h before quenching the reaction byrinsing the sample with fresh 1,4-dioxane. The product was soaked in 1,4-dioxane for 3days,replacingthesolventwithfreshsolventevery24h,beforeisolationbyfiltration.ThePXRDpatternfor7isshowninFigureS36,andthe1HNMRspectrumofdigested7isshowninFigureS37.The1HNMRspectrumofdigestedproductfromthereactionwithoutpyrazoleisshowninFigureS38,andtheESImassspectrumforthismaterialisshowninFigureS39.TheFTIRspectrumof7isshowninFigureS40andtheTGAfor7isshowninFigureS41.

    FigureS36.ThePXRDpatternfor7incomparisonwiththatforMIL-68(In)-NH2.

  • S27

    FigureS37.The1HNMRspectrumof7followingdigestioninNaOD/D2O.

    FigureS38.The1HNMRspectrumoftheproductofthereactionbetweenMIL-68(In)-NH2,formaldehydeandmethanol,followingdigestioninNaOD/D2O.

  • S28

    FigureS39.ThenegativeionESImassspectrumof7.

    FigureS40.TheFT-IRspectrumof7(red)incomparisontothatofMIL-68(In)-NH2(black).

  • S29

    FigureS41.ThermogravimetricanalysesforMIL-68(In)-NH2(black)and7(red).

  • S30

    8. CrystalstructuredeterminationsUsingtheOlex2interface,S8thestructuresweresolvedwithShelXSS9andrefinedusingShelXL.S108.1 Crystalstructureof[Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]·2C7H85Single crystal X-ray diffraction data for 5 were collected at 100 K on a Bruker Apex IIdiffractometer using synchrotron radiation (λ = 1.0333 Å) at Beamline 11.3.1 at the ALSLawrence Berkeley National Laboratory. Key information about the data collection andstructurerefinementisgiveninTableS1.TableS1.Datacollection,structuresolutionandrefinementfor5.Empiricalformula C50.72H49.72N8.36O12Zn3Formulaweight 1164.50Temperature/K 100.00(10)Crystalsystem trigonalSpacegroup R–3ma/Å 18.1826(7)b/Å 18.1826(7)c/Å 13.7312(6)α/° 90β/° 90γ/° 120Volume/Å3 3931.4(3)Z 2ρcalc/gcm–3 0.984μ/mm–1 2.565F(000) 1197.0Crystalsize/mm3 0.03×0.03×0.022θrangefordatacollection/° 10.858to74.954Indexranges –21≤h≤21,–21≤k≤21,–16≤l≤16Reflectionscollected 10674Independentreflections 810[Rint=0.0490,Rsigma=0.0236]Data/restraints/parameters 810/31/84Goodness-of-fitonF2 1.222FinalRindexes[I≥2σ(I)] R1=0.0536,wR2=0.1744FinalRindexes[alldata] R1=0.0613,wR2=0.1811Largestdiff.peak/hole/eÅ–3 0.76/–0.44Theasymmetricunitinthisstructurecomprisesonezinccentre(Zn1)withasiteoccupancyfactor of 0.083333, a second zinc centre (Zn2) with an occupancy of 0.166667, a dabconitrogen(N1)andcarbon(C7)withsiteoccupanciesof0.16667and0.5,respectively,plusaportionofafunctionalisedbenzenedicarboxylateligandwhichoverallrepresentsamixtureofbdc-NH2andbdc-NHCH2pyzina34:56ratio.

  • S31

    AtomsO1,O2,C1,C2,C3andC4fromthedicarboxylatecorearecoincidentwithaspacegroup mirror plane and, consequently all have half site-occupancy. This has chemicalintegrity in terms of a Zn:dianion:dabco ratio within the asymmetric unit of0.25:0.25:0.16667, which equates to a ratio of 3:3:1 in the gross structure. Because ofcrystallographic symmetry, the functionalities in both bdc ligands are necessarilydisordered.Hence,N2,whicharecommontobothpendantgroupshasasiteoccupancyof0.25.C5andN3weretheonlyatomsthatcouldbe locatedwithanyreliability in thetag.Disorder and incomplete PSM conversion dictate that the site occupancy of these twofractionalatomsisintheregionof0.14.Crystallographic symmetry alsomeans that thedabcoCH2moieties aredisordered.Giventhe tag disorder plus the fact that the electron density pertaining to the atoms thereinbecomes more diffuse with distance from the linker, the usual means of determiningstructuralvoidsisnotreallyapplicablehere.Infact,useofthePLATONsqueezealgorithm,inthiscase,affordedadatasetagainstwhichrefinementyieldedhigherresiduals!However,TGAexperimentsindicatedamasslossthatcorrespondedtoapairoftoluenemoleculesforevery three zinc centres present. Overall, this provides a formulation of [Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]·2C7H8forthiscompound.ADPrestraintswereaddedonmeritforfractionaloccupancyatoms,inthefinalleast-squarescyclestoassistconvergence.The asymmetric unit for 7 is shown in Figure S42 and the orientations adopted by thedisorderedpyrazole-containingsubstituentareshowninFigureS43.

  • S32

    FigureS42.Theasymmetricunitof[Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]·2C7H85.

    FigureS43.Partofthestructureof[Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]·2C7H85,showing

    theorientationofthepyrazoleringsawayfromthebridgingdabcoligands.

  • S33

    8.2 Crystalstructureof[In(OH)(bdc-NH2)0.41(bdc-NHCH2OCH3)0.30(bdc-N=CH2)0.29]7Single crystal X-ray diffraction data for 7 were collected on an Agilent SuperNovadiffractometerusingCuKαradiation(λ=1.5418Å)at150K.KeyinformationaboutthedatacollectionandstructurerefinementisgiveninTableS2.TableS2.Datacollection,structuresolutionandrefinementfor7.Empiricalformula C12.09InNO6.9H13.6Formulaweight 398.14Temperature/K 150.00(2)Crystalsystem orthorhombicSpacegroup Cmcma/Å 21.7325(8)b/Å 37.6102(14)c/Å 7.22490(19)α/° 90.0β/° 90.0γ/° 90.0Volume/Å3 5905.4(3)Z 12ρcalc/gcm–3 1.343μ/mm–1 9.828F(000) 2368.0Crystalsize/mm3 0.126×0.045×0.035Radiation CuKα(λ=1.54184)2θrangefordatacollection/° 8.136to139.974Indexranges –13≤h≤26,–22≤k≤45,–8≤l≤8Reflectionscollected 3110Independentreflections 3110[Rsigma=0.0779]Data/restraints/parameters 3110/104/146Goodness-of-fitonF2 1.078FinalRindexes[I≥2σ(I)] R1=0.0401,wR2=0.1087FinalRindexes[alldata] R1=0.0548,wR2=0.1197Largestdiff.peak/hole/eÅ–3 0.90/–0.93Despite collection of a good data set for this structure, high symmetry in the diffractionpatterncausedconsiderabledifficultiesinspacegroupassignment.Thecrediblecontenderswere the hexagonalP63/mmc and the orthorhombicCmcm. Bothwere explored in detailbeforepresentationofthemodelherewhichisinthelattersetting.Asolutionwasbrokeredin thehigher symmetryhexagonaloption,butwith477 systematicabsenceviolations,nodetectabletwinningoptions.

  • S34

    Space group Cmcmwas thenexaminedand a reasonable solutionwas extractedwhereintheasymmetricunitwasseentocomprisetwometalcentreswithsiteoccupanciesof0.5and0.25forIn1andIn2,respectively,halfofadicarboxylateligand(basedonO3)withC4,C5 C8 and C9 located at a crystallographic mirror plane, one quarter of a dicarboxylateligand(basedonO2)withC1andC2alsolocatedatamirrorplane.Thislattermoietyisalsoproximate to a second crystallographicmirror planewhich contributes to generating theremainder.TwoOHligands(basedonO1andO5)withcombinedsiteoccupanciesof0.75are alsopresent in the asymmetric unit and, finally, therewas evidence for somediffusesolventpresentintheframework.Initialrefinement,prePLATONSQUEEZErenderedanR1valueintheregionof9.6%-butwithapoorweightingscheme.PLATON analysis suggested that the data might have arisen from a 3-fold pseudo-merohedraltwin,andarefinementagainstanappropriatedatasetreducedtheR1valuetotheregionof6.5%.Atthispoint,therewasnoevidenceofthetag,sohydrogenatomswereattachedtothearomaticcarbonspriortoimplementationofPLATONSQUEEZE.Subsequentrefinementagainstthearisingdatasetfromthisalgorithmrevealedelectrondensitymaximaintheregionofthearomatichydrogens,butatalongerdistancefromthesecarbons.Thiswasinterpretedasevidenceforthenitrogeninthetagsbeingdisorderedamongstthearylcarbons. Hence, the aromatic carbons were removed from the model, in favour of 3isotropicallyrefined,partialoccupancynitrogensperasymmetricunit.C–Ndistanceswererestrained to being similar given the low level of electron density at each site. 0.8 of adioxanemoleculeperindiumcentreareincludedintheempiricalformulagivenherebasedonTGAresultsforthismaterial.AtomsC3,C6andC7exhibiteddisorderwhichwasmodelledover2sitesin50:50,66:34and66:34 ratios, respectively. Some ADP restraints were also included in the refinement toassistconvergence.Theasymmetricunitfor7isshowninFigureS44.

    FigureS44.Theasymmetricunitof[In(OH)(bdc-NH2)0.41(bdc-NHCH2OCH3)0.30(bdc-N=CH2)0.29]7.

  • S35

    9. ReferencesS1. J.H.Cavka,S.Jakobsen,U.Olsbye,N.Guillou,C.Lamberti,S.BordigaandK.P.Lillerud,

    J.Am.Chem.Soc.2008,130,13850.S2. M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O'KeeffeandO.M.Yaghi,

    Science2002,295,469.S3. H.Chun,D.N.Dybtsev,H.KimandK.Kim,Chem.Eur.J.2005,11,3521S4. C.Volkringer,M.Meddouri,T.Loiseau,N.Guillou,J.Marrot,G.Férey,M.Haouas,F.

    Taulelle,N.AudebrandandM.Latroche,Inorg.Chem.,2008,47,11892.S5. S.J.GaribayandS.M.Cohen,Chem.Commun.,2010,46,7700.S6. H.Yim,E.KangandJ.Kim,Bull.KoreanChem.Soc.,2010,31,1041.S7. D.N.Dybtsev,H.ChunandK.Kim,Angew.Chem.Int.Ed.,2004,43,5033.S8. O.V.Dolomanov,L.J.Bourhis,R.J.Gildea,J.A.K.HowardandH.Puschmann,J.Appl.

    Cryst.,2009,42,339.S9. G.M.Sheldrick,ActaCrystallogr.Sect.A,2008,64,112.S10. G.M.Sheldrick,ActaCrystallogr.Sect.C,2015,71,3.