amendments to control phosphorus mobility - wur · amendments to control phosphorus mobility ......

40
Amendments to Control Phosphorus Mobility George O’Connor 1 , Herschel Elliott 2 , and Sampson Agyin-Birikorang 1 1 University of Florida and 2 Penn State University O’Connor Elliott Agyin-Birikorang

Upload: dangxuyen

Post on 12-Apr-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

Amendments to Control Phosphorus Mobility

George O’Connor1, Herschel Elliott2, and Sampson Agyin-Birikorang1

1University of Florida and 2Penn State University

O’Connor Elliott Agyin-Birikorang

The Phosphorus Problem

• High-P soils + off-site P loss = water quality degradation

• Greatest risk– Small soil retention capacity – PSI<0.25

– Short connectivity distances– Sensitive water bodies

– Coastal plain soils– Most of Florida!

Best Management Practices

• Reduce P inputs: – NMPs, CNMPs– Long “lag” times

• Reduce P solubility • Increase soil retention

• Intercept P released

Amenableto

Amendment Augmentation

Objectives

• Describe BMP augmentation with amendments– Basis

– Effectiveness– Potential concerns

– Focus• Drinking water treatment residuals (WTRs)• Strategies for use

Wanielista et al. 2009; Agyin-Birikorang et al. 2009 (2); O’Connor et al. 2005

Reduce P Solubility

• Adjust soil or water pH – maintenance• Remove P from water – alum

– Lakes – e.g., Lake Langsjon, Sweden• Al3+ + 6 H2O → 3H2O + Al(OH)3(s) + P →

flocculant enmeshment and adsorption of P

and/or

• Al 3+ + HnPO4n-3 → AlPO4 (s) + nH+

precipitation

• Sometimes with polymers to enhance flocculation

Harper et al., 1998

System

Back

Online

Lake Lucerne, FL

Storm Water

PARAMETERSETTLEDWITOUTALUM

ALUM DOSE (mg L-1 as Al)

5 mg L-1 7.5 mg L-1 10 mg L-1

%

Diss. Organic N 20 51 62 65

Particulate N 67 88 94 96

Total N 20 25-50 30-60 40-70

Diss. Ortho-P 17 96 98 98

Particulate P 71 82 94 95

Total P 45 86 94 96

Harper et al., 1998

• Limit diffusion release of P from sediments in storm water treatment areas (STAs) and constructed wetlands– Al3+ (alum) and Al(OH)3(s) reacts with

sediment surface-bound P to form barrier to diffusion of P from sediments to water column

– Al serves as large capacity sink for P from above and below

Reduce Sediment P Solubility

Cs

SedCs

Soil/sediment

Floodwater

After Amendment (WTR) application

WTR

Cs

SedCs

Soil/sediment

Floodwater

WTR

0

20

40

60

80

100

120

140

Untreatedmanue

low alum low AlCl3 high alum high AlCl3

So

lub

le P

in m

anu

re (

mg

P L

-1)

low AlCl3 high AlCl3

Reduce P-Source Solubility

Smith et al., 2001

Reduce P-Source Solubility

0

2

4

6

8

10

0 10 20 30 40 50 60Time (days)

Wat

er s

olu

ble

P (

mg

kg

-1)

Undigested, no Fe/Al, no lime

Anaerobic, no Fe/Al, no lime

Undigested, Fe and lime added

Anaerobic, Fe and lime added

Control (unamended soil)

Maguire et al., 2001

Amendment Characteristics

Amendment pH Mn Cu Zn As Se Mo

-----------------------mg kg-1 -----------------------

M-Al-WTR 5.0 40 60 20 9.5 1.7 20

O-Al-WTR 6.8 50 10 10 13 2.3 2.2

Fe-WTR 6.1 600 480 30 44 2.3 71

Ca-WTR 8.9 10 10 10 0.3 0.1 0.3

Coal slag 3.7 140 80 440 51 22 173

Pro-Sil 11 820 40 40 1.4 3.8 42

Fe-humate 3.4 20 20 10 1.8 13 0.3

Gypsum 8.3 10 10 10 0.1 2.8 1.7

Lime 8.9 30 10 10 1.9 0.8 0.6

DinoSoil 3.6 350 30 90 16 1.0 0.2

Increase Soil Retention of P

P source TreatmentMean total P

leachedApplied P leached

mg %

TSP - 75.7 20.7

TSP Al-WTR 2.60 0.73

TSP Fe-WTR 12.8 3.5

TSP Ca-WTR 9.1 2.5

TSP Hematite 73.1 20.0

None Fe-WTR 0.16 0.049

None - 0.29 NA

Elliott et al., 2002

0

5

10

15

20

25

-150-100-50050100150SPSC (mg kg-1)

So

il W

EP

(m

g k

g-1

) 0%WTR1%WTR2.5%WTR

Increase Soil Retention of P

Oladeji, 2006

Buffer Strip Enhancement Buffer Strip Enhancement

WTR A B C D E

WTR rate (Mg ha-1)

---% Soluble P Reduction------

5 3 7 33 38 33

10 25 40 46 49 51

20 71 67 79 84 86

Dayton and Basta, 2005

WTR treatments Cumulative P Leached

Rate (g kg-1)Extent of WTR

incorporation (%) Mass (mg) % initial P load

0 - 408 32

25 50 230 13

50 50 210 12

100 50 194 10

25 100 59 4

50 100 18 1

100 100 4.4 0.3

Control of Soil Legacy PControl of Soil Legacy P

Silveira et al., 2006

Intercept Released P:Permeable Reactive Barriers

http://www.p2pays.org/ref/14/0_initiatives/init/winter99/images/Barrier.gif

Permeable Reactive Barrier: Denitrification Wall Demonstration

Holly Factory Nursery

Boston Farm

Santa Fe River

Floodplain

Denitrification

Wall

SW3 Nitrogen Loading

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

8/1

1/0

9

8/1

8/0

9

8/2

5/0

9

9/1

/09

9/8

/09

9/1

5/0

9

9/2

2/0

9

9/2

9/0

9

10

/6/0

9

10

/13

/09

10

/20

/09

10

/27

/09

11

/3/0

9

11

/10

/09

11

/17

/09

11

/24

/09

12

/1/0

9

12

/8/0

9

12

/15

/09

12

/22

/09

12

/29

/09

Da

ily

Nit

rog

en

Lo

ad

ing

Ra

te (

kg

/da

y)

Total Nitrogen Daily Loading Rate (kg/day)

Nitrate Daily Loading Rate (kg/day)

Average Before Denitrification Wall (1.46 kg/day)

Average After Denitrification Wall (0.394 kg/day)

Denitrification Wall

Installed (9/29/09)

Large Storm

12/2/09 18:55 = 11.7

kg/day

12/2/09 19:20 13.8

kg/day

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900

Equlibrium P concentration (mg L-1)

Sorb

ed P

(m

g kg

-1)

Bradenton-FLHolland-MILowell-ARTampa-FLPanama-FLCocoa-FL

WTRs: All are not the Same!

Makris and O’Connor, 2007

WTR Mechanisms:High P sorption

External Internal

Right (high BET-SA)

Wrong (small BET-SA)

Macropores (High Hg-SA)

Micropores (High CO2-SA)

P in MicroporesMakris, 2004

WTR Mechanisms

Makris and O’Connor, 2007

WTR research and case studies

Elliott et al., 2002

0

20

40

60

80

0 1 2 3 4 5 6

Al-WTR Added (%)

So

lub

le P

(m

g L

-1)

TSP

Largo

Tarpon Springs

Baltimore

WTR research and case studies

0.00

0.25

0.50

0.75

1.00

1.25

Manure Biosolids 1 Biosolids 2 TSP Control

Phosphorus Source

Deg

ree

of

P S

atu

rati

on

N-based, no WTR N-based, with WTR

P-based, no WTR P-based, with WTR

Agyin-Birikorang et al., 2008

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Manure Biosolids 1 Biosolids 2 TSP Control

Phosphorus Source

So

lub

le r

eact

ive

P (

mg

L-1

)

N-based, no WTR N-based, with WTR

P-based, no WTR P-based, with WTR

WTR research and case studies

Agyin-Birikorang et al., 2009

Evidence of long-term stability

0

20

40

60

80

100

120

t(0) 1 mo 6 mo 1 yr 3.5 yr 4 yr 4.5 yr

Incubation time

Lab

ile P

co

nc.

(m

g k

g-1

)No WTR (pH 3) No WTR (pH 4) No WTR (pH 7)

WTR-amended (pH 3) WTR-amended (pH 4) WTR-amended (pH 7)

Agyin-Birikorang and O’Connor, 2007

Evidence of long-term stability

0

10

20

30

40

50

60

70

80

90

0 5 10 21

Rate of WTR application (Mg ha-1)

So

lub

le P

co

nce

ntr

atio

n (

mg

kg

-1)

Bayley et al., 2008

Agronomic critical value

Environmental threshold

Soil test P

A E = ~3A

RD

P (

mg

L-1

)

Change point

RD

P (

mg

L-1

)

Nair and Harris, 2004

Issues:How much WTR to apply?

0

2

4

6

8

10

0 2 4 6Bahiagrass P conc. (g kg-1)

Dry

mat

ter

(Mg

ha-1

)

Plant DM and P concentrations-150

-100

-50

0

50

100

150

0 2 4 6

Bahiagrass P conc. (g kg-1)

SP

SC

(m

g P

kg

-1)

SPSC and plant P concentrations

Oladeji, 2006

How Much WTR?

How Much WTR?(SPSC based)

SPSC (mg P kg-1) = (0.15 – PSI)* (Alox + Feox)*31

where PSI = [(Pox)/(Alox + Feox)]

SPSC < 0: highly P-impacted soilsSPSC > 0: less P-impacted soils, but P deficientSPSC = 0: agronomic and environmentally “safe”

SPSCsoil* Masssoil + APSCsource* Masssource + APSCWTR* MassWTR = 0

MassWTR is the only unknown variable

Oladeji et al., 2007

FL Concerns about WTR Use:Trace element loads

Total Al concentration (104-176 g kg-1) > SCTL (7.2 g kg-1)

• Land application may result in:1.P deficiency2.Al phytotoxicity3.Al contamination of groundwater4.Animal toxicity

Total As > residential exposure limits (2.1 mg kg-1)• Human exposure to As

DM Yield and P Uptake

0

2

4

6

8

10

12

14

2003 2004 Total DMGrowing period

DM

(M

g h

a-1

)

N-based, no WTRP-based, no WTRControlN-based, WTRP-based, WTR

0

5

10

15

20

25

30

35

2003 2004 Total P uptake

Growing periodP

up

take

(kg

ha-1

)

ns ns

ns

a a b b

aab

cc

b

nsb

Oladeji et al., 2009

Plant Al Uptake

a

a a

0

20

40

60

80

100

July Aug. Oct.

Plant Sampling time

Alu

min

um

Up

take

(g

ha-1

)

No WTRWith WTR

aa

aa

aa

Oladeji et al., 2009

Shallow Groundwater Al

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10 12 14 16 18

Time after amendment application (mo)

Tot

al d

isso

lved

Al (

mg

L -1

)

N-based,no WTR N-based+WTR ControlP-based,no WTR P-based+WTR

Agyin-Birikorang et al., 2009

Animal Effects:Grazing Cattle

• Duration of study: 2 y

• Cumulative Rate: 76 Mg WTR ha-1

• No effects on liver, bone, and plasma Al, P, Ca, Mg, K, and Zn concentrations

• No effects on growth and development

Madison et al., 2009

Soil Depth App. Method WTR Rate (%)Added Soil As

(mg kg-1)

1 cm surface applied 1 1.8

1 cm surface applied 2.5 4.5

5 cm surface applied 1 0.4

5 cm surface applied 2.5 0.9

15 cm incorporated 1 0.1

15 cm incorporated 2.5 0.3

Soil As Considerations

Residential exposure limits = 2.1 mg kgResidential exposure limits = 2.1 mg kg--11

Industrial exposure limits = 21 mg kgIndustrial exposure limits = 21 mg kg--11

• Know WTR characteristics– Oxalate extractable Fe/Al content– Other constituents (e.g. trace elements)

• New P additions control– Surface apply WTR– Co-apply with P sources– Match rate to P additions and SPSC

• Legacy P control– Incorporate WTR– “Hot spots”

• Permeable Reactive Barriers

Lessons Learned

• Agyin-Birikorang, S., and G.A. O'Connor 2007. Lability of drinking-water treatment residuals (WTR) immobilized phosphorus: Aging and pH effects. J. Environ. Qual. 36:1076-1085.

• Agyin-Birikorang, S., G.A. O'Connor, O.O. Oladeji, T.A. Obreza, J.C. Capece. 2008. Drinking-water treatment residuals (WTR) effects on the phosphorus status of field soils amended with biosolids, manure, and fertilizer. Commun. Soil Sci. Plant Anal. 39:1700-1719.

• Agyin-Birikorang, S., G.A. O'Connor, and T.A. Obreza. 2009. Are alum-based drinking water treatment residuals safe for land application? Extension letter SL 299 Univ. of Florida, 8 pp.

• Agyin-Birikorang, S., O.O. Oladeji, G.A. O’Connor, T.A. Obreza, and J.C. Capece. 2009. Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: A field study in Florida J. Environ. Qual. 38:1076-1085.

• Bayley, R.M., J.A. Ippolito, M.E. Stromberger, K.A. Barbarick, and M.W. Paschke. 2008. Water treatment residuals and biosolids coapplications affect semiarid rangeland phosphorus cycling. Soil Sci. Soc. Am. J. 72:711-719.

• Dayton, E.A., and N.T. Basta. 2005. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores. J. Environ. Qual. 34: 2112-2117.

• Elliott, H.A., G.A. O'Connor, P. Lu, and S. Brinton. 2002. Influence of water treatment residuals on phosphorus solubility and leaching. J. Environ. Qual. 31:1362-1369.

• Harper, H.H., J.L. Herr, and E.H. Livingston. 1998. "Alum Treatment of Stormwater: The First Ten Years." New Applications in Modeling Urban Water Systems - Monograph 7 - Proceedings of the Conference on Stormwater and Related Modeling: Management and Impacts, Toronto, Canada, February 19-20.

• Madison, R.K., L.R. McDowell, G.A. O'Connor, N.S. Wilkinson, P.A. Davis, A.T. Adesogan, T.L. Felix, and Brennan M. 2009. Effects of aluminum from water-treatment-residual applications to pastures on mineral status of grazing cattle and mineral concentrations of forages. Commun. Soil Sci. Plant Anal. 40:3077-3103.

• Maguire,R.O., J.T. Sims, S.K. Dentel, F.J. Coale, and J.T. Mah. 2001. Relationships between biosolids treatment process and soil phosphorus availability. J. Environ. Qual. 30:1023-1033.

• Makris, K.C., 2004. Long-term stability of sorbed phosphorus by drinking water treatment residuals: mechanisms and implications. PhD diss. Univ. Florida. Gainesville, FL.

• Makris, K.C., and G.A. O’Connor. 2007 Beneficial utilization of drinking-water treatment residuals as contaminant-mitigating agents. In: D. Sarkar et al. (Eds). Developments in Environmental Science, Vol. 5: Concepts and Applications in Environmental Geochemistry, Elsevier Sci. Amsterdam, pp.607-636.

• Nair, V.D., and W.G. Harris. 2004. A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment. New Zealand J. Agri. Res. 47:491-497.

• O'Connor, G.A., S. Brinton, and M.L. Silveira 2005. Evaluation and selection of soil amendments for field testing to reduce P losses. Soil Crop Sci. Soc. FL. Proc. 64:22-34.

• Oladeji, O.O., 2006. Management of phosphorus sources and water treatment residuals (WTR) for environmental and agronomic benefits. PhD diss. Univ. Florida. Gainesville, FL.

• Oladeji, O.O., G.A. O’Connor, J.B. Sartain, and V.D. Nair., 2007. Controlled application rate of water treatment residual for agronomic and environmental benefits. J. Environ. Qual. 36:1715-1724.

• Oladeji, O.O., J.B. Sartain, and G.A. O’Connor, 2009. Land application of aluminum water treatment residual: Aluminum phytoavailability and forage yield. Commun. Soil Sci. Plant Anal. 40:1483-1498

• Silveira, M.L., M.K. Miyattah, and G.A. O'Connor. 2006. Phosphorus release from a manure-impacted Spodosol: Effects of a water treatment residual. J. Environ. Qual. 35:529-541.

• Smith, D.R., P.A. Moore, C.L. Griffis, T.C. Daniel, D.R. Edwards, and D.L.Boothe. 2001. Effects of alum and aluminum chloride on phosphorus runoff from swine manure. J. Environ. Qual. 30:992-998.

• Wanielista, M., D. Bottcher, T. DeBusk, H. Harper, S. Iwinski, and G.A. O'Connor. 2009. Technical assistance for the northern Everglades chemical treatment pilot project. SFWMD Project ID#: PS 100093, July 6, 2009.

References