amem 314 theory

Upload: venkata-dinesh

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 AMEM 314 Theory

    1/8

    Debre Tabor University

    Strength of Materials II

    DETERMINATE BEAMS

    Equations of pure bending:

    M: Bending Moment [N*m]: normal stress [N/m2]E: Modulus of elasticity [N/m2]: adius of !ur"ature [m]y: #istance from neutral surface [m]$: Moment of inertia [m%]

    Equation of elastic cur"e:

    Boundary !onditions:

    (c) !antile"er beam

    I

    y2

    x2 = M

    = ER

    = y

  • 8/10/2019 AMEM 314 Theory

    2/8

    Debre Tabor University

    INDETERMINATE BEAMS

    Macaulays Method (Singularity functions)

    If positive then the brackets (< ! can

    be rep"aced by parentheses# $ther%ise

    the brackets %i"" be e&'a" to ER$#

    & ' ( a ) n

    d ' * +n , +

    & ' ( a ) n , +

    ' ) a

    - & ' & a& ' ( a ) n

    * )

    ' ) a& ' ( a ) n

    * . ' ( a /n

    0

    1 o

    ab =

    0

    1 o

    ab

    1 o

    *tep%ise processes in order to deter+ine the reactions, the s"ope and the def"ection#

    Superposition Method

    -e so"ve the prob"e+ separate"y

  • 8/10/2019 AMEM 314 Theory

    3/8

    Debre Tabor University

    STRAIN ENERGY

    Strain Energy of a e!er. is the increase in ener/y associated %ith the

    defor+ation of the +e+ber#

    d '3 t r a i n E n e r g y * 4 *

    Strain Energy "ensity of a aterial. *train Ener/y per 'nit 0o"'+e#

    3 t r a i n E n e r g y # e n s i t y * u *d U

    d 0 *

    )

    1 56d ' *

    +2

    2 7

    E#ASTI$ STRAIN ENERGY %&R N&RMA# STRESS

    *train ener/y 'nder 3xia" 4oadin/

    4 *5 4

    2

    2 3 E

    2 *train Ener/y in 6endin/

    M 2

    d '4 *2 E I

    E#ASTI$ STRAIN ENERGY %&R S'EARING STRESS

    7 8 9 d : 8 9u *7 8 9 . s h e a r i n / s t r e s s

    : 78 9 8 9. s h e a r i n / s t r a i n c o r r e s p o n d i n / t o

    u *d U

    d 0U =

    )

    : 8 9

    7 8 92

    d 0

    )

    : 8 9

    2 8U =

    T 42

    2 ; . E f f e c t i v e " e n / t h f a c t o r

    5 =c r?

    2E I

    ( > 4 !2

    c r =?

    2E

    ( > 4 r !@2

    > 4 r@ . E f f e c t i v e A s " e n d e r n e s s r a t i o

    G depends on tHe support:

  • 8/10/2019 AMEM 314 Theory

    5/8

  • 8/10/2019 AMEM 314 Theory

    6/8

    Debre Tabor University

    INE#ASTI$ EN"ING

    Maximum Elastic Mm!"t

    Issume tHat tHe applied moment M=MYis sufficient to produce yielding strains in tHe

    top and bottom fibers of tHe beam as sHo1n in figure J+b 3ince tHe straindistribution is linearK 1e can determine tHe stress distribution by using tHe stressstrain diagram .figure J+c LHen tHese stresses are plotted at tHe measured pointsyH/2K yy+K yy2tHe stress distribution in figure J+d(e results

    igure J+

    Le must cHec; to see if equation .EqJ+ is satisfied $n otHer 1ords 1e must cHec;

    to see if tHe resultant force is equal to EO

    * -d II EqJ+

    Po do so 1e 1ill first calculate tHe resultant force for eacH of tHe t1o portions of tHestress distribution sHo1n in figure J+e 8eometrically tHis is equi"alent to finding tHeVOLUMESunder tHe t1o triangular bloc;s

    Le Ha"e:

    3ince T#CK equation EqJ+ is satisfied and tHe neutral a'is passes tHrougH tHecentroid of tHe cross sectional area

    PHe Maximum Elastic Mm!"tcan be calculated by multiplying tHe forces T$CbytHeir corresponding distances from tHe neutral a'is PHus:

  • 8/10/2019 AMEM 314 Theory

    7/8

    Debre Tabor University

    PHe same result can of course be obtained in a more direct manner by using tHe

    fle'ure formulaK tHat isK . =Y YM c / I. I:Moment of inertiac: PHe perpendicular distancefrom tHe neutral to a pointfartHest a1ay 1Here tHe forceacts

    PHe fle'ure formula tHenK gi"es: K or

    Maximum %lastic Mm!"t

    $f tHe internal moment M)MQK tHe material at tHe top and bottom of tHe beam 1illbegin to yieldK causing a redistribution of stress o"er tHe cross section until tHerequired internal moment M is de"eloped 4sing tHe stresses sHo1n in figure J2c tHestress distributions can result .figure J2d(e Rere tHe compression and tensionstress Sbloc;sT eacH consist of component rectangular and triangular bloc;s

    PHeir &lum!sare:

  • 8/10/2019 AMEM 314 Theory

    8/8

    Debre Tabor University

    PHe Plastic Mm!"t can be calculated by multiplying tHe forces T$C by tHeircorresponding distances from tHe neutral a'is

    Beams used in steel buildings are sometimes designed to resist a plastic momentLHen tHis is tHe caseK codes usually list a design property for a beam called tHe

    s'a%! (act) PHes'a%! (act) *k

    + is design as tHe ratio of plastic moment .M"ersus tHe yielding moment .MQ:

    k =M P

    M Y