am technique

24
Fall 2001 Copyright 2001 ©Andreas Spanias I-1 Communication Systems AM Modulation/Demodulation Techniques Lecture 5 Andreas Spanias Dept. of Electrical Engineering Arizona State University email: [email protected] http://www.eas.asu.edu/~spanias

Upload: justdream

Post on 11-Feb-2016

215 views

Category:

Documents


0 download

DESCRIPTION

AM Technique

TRANSCRIPT

Page 1: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-1

Communication SystemsAM Modulation/Demodulation Techniques

Lecture 5

Andreas SpaniasDept. of Electrical Engineering

Arizona State University

email: [email protected]://www.eas.asu.edu/~spanias

Page 2: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-2

Demodulators

• AM Demodulation is done using mixer circuits and filters

• In most cases it requires synchronization circuits usually involving a Phase Locked Loop (PLL)

• DSB-SC requires synchronization while conventional DSB can be done with simple envelope detectors

• Demodulators are often more complex than modulators

Page 3: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-3

DSB-SC Modulation and Demodulation

ModulatorModulatorDeDe--modulator /modulator /

MixerMixer

)2cos( ϕπ +tfc

r(t)r(t)m(t)m(t)

)2cos( cctf ϕπ +

LPFLPF

TransmitterTransmitter ReceiverReceiver

y(t)y(t) y’(t)y’(t)

Page 4: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-4

Demodulation of DSB-SC

Assumptions:• Received signal r(t) is noise free• Ideal Channel r(t) = u(t)

Demodulate by multiplying r(t) with a cos(.) signal. This is called a “mixer”

)2cos()()()( ccc tftmAtutr ϕπ +==

Page 5: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-5

)2cos()( ϕπ +tftr cgenerally different from cϕ

)2cos()2cos()()( ϕπϕπ ++= tftftmAty cccc

The Mixer in DSB-SC

Xr(t)r(t) y(t)y(t)

)2cos( ϕπ +tfc

MixerMixer

Page 6: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-6

)])[cos((2

)(' ϕϕ −= cc tmAty

The LPF will cancel the component)4cos( ϕϕπ ++ cctf

Apply the trigonometric identity )cos(21)cos(

21cos.cos βαβαβα ++−=

)]4cos())[cos((2

)( ϕϕπϕϕ +++−= cccc tftmAty

Use a LPF after the mixer

The Mixer in DSB-SC (2)

)cos(2

)()]([ ϕϕ −= cc tmAtyLPF

High High freqfreq. . componentcomponent

Page 7: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-7

Synchronization RequirementNote that if ; receiver is synchronized

)cos(2

)()(' ϕϕ −= cc tmAty

°=− 45ϕϕ c 21)cos( =−ϕϕ c

°=− 0ϕϕ c

1)cos( =−ϕϕ c

if °=− 90ϕϕ c 0)cos( =−ϕϕ c ; no signal !

The Need for synchronization in DSB-SC

Page 8: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-8

DSB-SC time-domain waveforms

m(t)m(t)

u(t)u(t)

y(t)y(t)

Page 9: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-9

DSB-SC frequency-domain waveforms

M(f)M(f)

U(f)U(f)

Y(f)Y(f)

Page 10: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-10

DSB-SC frequency-domain waveforms

•The mixer produces the baseband and translated spectra at twise fc

•LPF removes the double frequency component

•Demodulator requires phase synchronization

•Transmission bandwidth is 2W

•Efficient relative to conventional DSB

Page 11: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-11

AM – Conventional Modulation

• This is the similar to DSB-SC except that the carrier signal is also transmitted

• The presence of the carrier signal at the receiver simplifies the demodulation circuit

• The carrier signal is transmitted by adding a D.C. bias to the message signal m(t)

Page 12: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-12

AM – Conventional Modulation (2)

DSB-AMAdvantages:• Simplifies the receiver• No need for synchronization

Disadvantages:• Inefficient in the sense that we expend

power to transmit the carrier that does not carry information

Page 13: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-13

Conventional Modulation

)(1 tm+

A D.C. bias is added to the messageA D.C. bias is added to the message

This signal then modulates a sinusoidThis signal then modulates a sinusoid

)2cos()](1[)( ccc tfAtmtu ϕπ ++=

Page 14: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-14

Conventional Modulation

)2cos( cctf ϕπ +

m(t)m(t) u(t)u(t)1+m(t)1+m(t)

Constant D.C., e.g., 1Constant D.C., e.g., 1

This transmitted signal includes the carrierThis transmitted signal includes the carrier

)2cos()()2cos()( cccccc tftmAtfAtu ϕπϕπ +++=

Page 15: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-15

Conventional Modulation Waveforms

m(t)m(t)

u(t)u(t)

Page 16: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-16

1)( ≤tmIf

Simple demodulation (detector) circuit

We normalize the message so that we can usean envelope detector

then 0)](1[ ≥+ cAtm

Therefore an envelope detector can be usedTherefore an envelope detector can be usedto detect m(t)to detect m(t)

Page 17: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-17

Envelope Detector Circuit

•• The diode acts as a rectifier and the capacitor discharges and iThe diode acts as a rectifier and the capacitor discharges and interpolatesnterpolates

•• In practice, the time constant of the RC circuit is chosen relatIn practice, the time constant of the RC circuit is chosen relative to the carrier ive to the carrier frequency and the message bandwidthfrequency and the message bandwidth

•• For proper operation of conventional modulation the carrier is aFor proper operation of conventional modulation the carrier is at least 10 times the t least 10 times the bandwidth of the message signalbandwidth of the message signal

Page 18: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-18

Envelope Detection Waveformsenvelopeenvelope

••Diode leaves only positive half cyclesDiode leaves only positive half cycles••Capacitor fills in between the Capacitor fills in between the hald hald cyclescycles

Page 19: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-19

Normalized Message Signal

1)( ≤tm

Since it is desirable to have

We can use a normalized message signal, i.e.,

))(max()()(

tmtmtmn =

Page 20: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-20

Conventional Modulation with a Normalized Signal

)2cos()](1[)( ccnc tftmaAtu ϕπ ++=

a is called the modulation index

If a<1 then

0)](1[ >+ cn Atma

Page 21: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-21

The Frequency Spectrum of Conventional AM

)]([.)( tuTFfU =

)()(.[2 cn

ju

jc ffMaefcfMaeAcc ++−= − ϕϕ

)]()( cj

cj ffeffe cc ++−+ − δδ ϕϕ

Page 22: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-22

|U(f)|

f(Hz)f(Hz)--fcfc+W+W--fcfc--WW fcfc+W+Wfcfc--WW

The Frequency Spectrum of Conventional AM (2)

carriercarrier

|M(f)|

......f(Hz)f(Hz)WW--WW

Page 23: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-23

For a sinusoid

)2cos()( tftm mπ= where cm ff <<

)2cos()](1[)( ccc tfAtmtu ϕπ ++=

)2cos()2cos()2cos( ccmcccc tftfAtfA ϕππϕπ +++=

)])(2cos())(2[cos(2

)2cos()( cmccmcc

ccc fftfftAtfAtu ϕπϕπϕπ ++++−++=

)()( fUtu ↔

Conventional AM with a single tone (1)

Page 24: AM Technique

Fall 2001 Copyright 2001 ©Andreas Spanias I-24

LSB LSBUSB USB

cf− cf

)]()([2

)( cj

cjc ffeffeAfU cc ++−= − δδ ϕϕ

)]()([4 mc

jmc

jc fffefffeAcc −+++−+ − δδ ϕϕ

)]()([4 mc

jmc

jc fffefffeAcc +++−−+ − δδ ϕϕ

mc ff +−mc ff −− mc ff − mc ff +

Conventional AM with a single tone (2)

carriercarrier