algorithms for ascertaining markers for controlling for...

58
Efficient algorithms for ascertaining markers for controlling for population substructure Oscar Lao Department of Forensic Molecular Biology Erasmus Medical Center (Rotterdam) New Jersey 2009 4/27/2009 1 New Jersey 2009

Upload: dangngoc

Post on 14-Mar-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Efficient algorithms for ascertaining markers for controlling for population substructure

Oscar LaoDepartment of Forensic Molecular Biology

Erasmus Medical Center (Rotterdam)New Jersey 2009

4/27/2009 1New Jersey 2009

Workflow1. Human population substructure

‐ How to detect it?

‐ How much?

‐Where does it come from?

2. Why does it matter?

3. Ancestry Sensitive Markers (ASMs) / Ancestry Informative Markers (AIMs)

‐ Hypothesis driven. Particular individual clusters are preferred‐ ASMs

‐ PhenoASMs

4/27/2009 2New Jersey 2009

How much there is and how much can be detected. The two sides of the same coin 

4/27/2009 3New Jersey 2009

Population substructure

Plato’s cave myth

– STRUCTURE

– BAPS

– FRAPPE

– GENELAND

– PCA/MDS + K means

– Neural Networks

– …

Sometimes results are NOT reproducible

4/27/2009 4New Jersey 2009

Population substructureDETECTION

Which type?‐ Phenotype

‐ GenotypeY chromosome

mtDNA

Autosomal markers

Where?‐Worldwide

‐ Regional (I will focus on Europe)

4/27/2009 5New Jersey 2009

Population substructureHOW MUCH?

4/27/2009 6New Jersey 2009

Phenotypic substructure

4/27/2009 7New Jersey 2009

Y chromosome

4/27/2009 8New Jersey 2009

mtDNA

Cavalli‐Sforza et al 19944/27/2009 9New Jersey 2009

Classical markers

1064 samples 51 human populations of global distribution

4/27/2009 10New Jersey 2009

CEPH-HGDP panel

993 autosomal markers

377 autosomal markers

M. EastAfrica Europe C/S-Asia E-Asia AmeriO

4/27/2009 11New Jersey 2009

Autosomal STRs

Rosenberg et al Science 2002

Rosenberg et al Plos Genetics 2005

Li et al Science 2008

650,000 SNPs (FRAPPE)

Jakobsson et al Nature 2008

550,000 SNPs (STRUCTURE) Haplotypes

4/27/2009 12New Jersey 2009

Autosomal SNPs

23 populations

500 Affy Array

4/27/2009 13New Jersey 2009

A set of European populations

Lao and Lu et al Current Biology 2008

300,000 SNPs

r=0.7

4/27/2009 14New Jersey 2009

Autosomal SNPs in Europe

Novembre et al Nature 2008

4/27/2009 15New Jersey 2009

Autosomal SNPs in Europe

K = 2; Admixture

Correlation with latitude

R2 = 0.86

Correlation with longitude

R2 = 0.01

4/27/2009 16New Jersey 2009

Autosomal SNPs in Europe

World Europe

Anayet peak (2574 m), Pyrenees Keukenhoof  garden(‐2 m), Netherlands

4/27/2009 17New Jersey 2009

Autosomal SNPs in Europe

EDAR (positive selection in Asians)

4/27/2009 18New Jersey 2009

Non random distribution ofpopulation substructure

LCT (positive selection in North European populations)

Lao and Lu et al Current Biology 2008

4/27/2009 19New Jersey 2009

Non random distribution ofpopulation substructure

Cavalli‐Sforza & Feldman Nature Genetics 2003

Simoni et al AJHG 2000

4/27/2009 20New Jersey 2009

Demography shapes thepopulation substructure

• Selective pressures within the species (locus specific)

Lactose toleranceMalaria resistenceHuman pigmentation…

4/27/2009 21New Jersey 2009

Selection shapes thepopulation substructure

• Population substructure & pigmentation (5 SNPs)

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

Europe

Africa

Middle East

Oceania

America

C/SAsia

EAsia

N Africa

MDS

5 to 12

12 to 16

16 to 20

20 to 24

24 to 30

Biasutti skin pigmentation units Lao et al Ann Hum Genet 2007

4/27/2009 22New Jersey 2009

Selection shapes thepopulation substructure

CASES CONTROLS

A

G

4/27/2009 23New Jersey 2009

Why population substructure:Confounding factor

Plato’s cave myth

CHANGE THE ALGORITHM FOR DETECTING POPULATION SUBSTRUCTURE

4/27/2009 24New Jersey 2009

Population substructure: improving the detection

Plato’s cave myth

4/27/2009 25New Jersey 2009

Population substructure: improving the detection

INCREASE THE RESOLUTION TO SEE THE OBJECTS

• Markers that capture most of the genetic ancestry– Estimate ancestry

– Reduce the number of markers to test for genetic homogeneity

• Time cost (clustering algorithms can be extremely computational intensive)

• Economical cost (i.e exclude individuals BEFORE doing the GWA)

4/27/2009 26New Jersey 2009

AIMs/ASMs

• Based on the existing diversity between individuals (i.e Paschou et al 2008)

• Based on predefined groups of individuals– No phenotype linked

• Large Genetic distances

• Signals of positive selection

– Phenotype linked• Covariates with the phenotype of interest

4/27/2009 27New Jersey 2009

Strategies to ascertain ASMs

• Use a statistic to quantify the amount of differentiation between populations

• Compute the OVERAL non‐redundant amount of In between set of SNPs

• Take the best combination of markers from all the possible combinations

• Repeat the process until the information of the set of markers is maximum

4/27/2009 28New Jersey 2009

A basic algorithm to ascertain ASMs

( ) ∑ ∑= =

⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

N

j

K

iij

ijjjn p

Kp

ppJQI1 1

loglog;

Am J Hum Genet. 2003 Dec;73(6):1402-22

informativeness for assignment

4/27/2009 29New Jersey 2009

A statistic to ascertain ASMs

• How much information a marker contains about the ancestry of one individual (measured in nats)

• Ranges from 0 to the natural logarithm of the number of clusters and it is proportional to the number of differentiated clusters

4/27/2009 30New Jersey 2009

A statistic to ascertain ASMs

• Computes the non‐redundant amount of information when considering more than one marker

• Requires computing the frequency of ALL the allelic combinations when considering more than 1 locus

4/27/2009 31New Jersey 2009

A statistic to ascertain ASMs

• Problem: The number of combinations increases exponentially with the number of markers. – Number of allelic combinations considering 50 SNPs:

4906,842,621,125,899,250 =

4/27/2009 32New Jersey 2009

A way to compute In

( ) ∑ ∑= =

⎟⎟⎠

⎞⎜⎜⎝

⎛−=

N

j

K

i

ijjn K

HHJQI

1 1;

( )∑=

≈N

ip

NH

1ln1 By applying the

Asymptotic Equipartition Property of Entropy

( ) ∑ ∑= =

⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

N

j

K

iij

ijjjn p

Kp

ppJQI1 1

loglog;

4/27/2009 33New Jersey 2009

A way to compute In

• Problem: Considering 8,000 markers, ascertaining the best set of 50 markers requires computing :

( )130104

!50000,8!508,000!

×≈−

=nscombinatioN

4/27/2009 34New Jersey 2009

A method to ascertain ASMs

Population of answers

Select best answers (>In)

Random mating

Recombination/Mutation

Next generation

4/27/2009 35New Jersey 2009

A method to ascertain ASMs

10k Affymetrix Array(~9000 SNPs after excluding X-SNPs & missing SNPs)

SNP ascertainment(10 SNPs) (10 SNPs)

YCC-panel76 human individuals 21 sampling localities

CEPH-HGDP panel1064 samples 51 human populations of global distribution

Perlegen Database3 Human populations~1,500,000 SNPs(most informative 5 SNPs)

Reproducibility of geographic structure in a

different dataset

Test for signatures of

positive selection(EHH test)

Lao et al. Am J Hum Genet. 2006 Apr;78(4):680‐90

4/27/2009 36New Jersey 2009

ASMs for continental differentiation using Affy 10k

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of SNPs

perc

enta

geof

info

rmat

ion

The genetic algorithm was applied increasing every time the

number of selected SNPs

Marker name

Chromosome Gene name IN (%) from 4 groups YCC panel

IN (%) from 7 groups CEPH-HGDP

rs722869 14 VRK1 29.066 7.960 rs1858465 17 25.637 9.228 rs1876482 2 LOC442008 24.589 10.290 rs1344870 3 22.810 11.074 rs1363448 5 PCDHGB1 19.418 4.552 rs952718 2 ABCA12 18.739 9.472 rs2352476 7 18.317 5.603 rs714857 11 18.083 6.157 rs1823718 15 17.845 5.451 rs735612 15 RYR3 14.315 5.530

Selected SNPs in the final 10 SNPs run

Lao et al. Am J Hum Genet. 2006 Apr;78(4):680‐90

4/27/2009 37New Jersey 2009

ASMs for continental differentiation using Affy 10k

Europe AfricaM. EastC/S-AsiaE-AsiaAmeri O

10 SNPs No admixture

Admixture

993 autosomal markers

Lao et al. Am J Hum Genet. 2006 Apr;78(4):680‐90

4/27/2009 38New Jersey 2009

ASMs for continental differentiationASMs for continental differentiation using Affy 10k

K = 6 (1000 (randomly ascertained) markers, Admixture, 10,000 burning, 10,000 retained simulations)

Africa Sub‐Saharan Europe India East Asia Am

K = 5 (50 markers, Admixture,  500,000 burning, 500,000 retained simulations)

K = 6 (100 markers, Admixture,  100,000 burning, 100,000 retained simulations)

4/27/2009 39New Jersey 2009

ASMs for continental differentiation using HapMap III

E Asia

Oceania

Africa

Europe

Middle East

Central Asia

Amerindians

25 ascertained markers. PCA

4/27/2009 40New Jersey 2009

ASMs for continental differentiation using Illumina 650k

• CEPH550,000 SNPs

K = 5 (50 ascertained markers, Admixture,  500,000 burning,  500,000 retained simulations)

4/27/2009 41New Jersey 2009

ASMs for continental differentiation using Illumina 650k

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Africa Europe‐Meast‐Casia Easia Oceania Amerindian

K=Oceania

K=Europe‐Meast‐Casia

K=Amerindian

K=Africa

K=Easia

Real geographic location

Inferred geographic location

4/27/2009 42New Jersey 2009

Specificity of the ascertained markers

K = 2 (5000 random markers, Admixture,  10,000 burning, 10,000 retained simulations)

K = 3 (500 ascertained markers, Admixture,  10,000 burning, 10,000 retained simulations)

4/27/2009 43New Jersey 2009

ASMs for population differentiation in the European continent using Affymetrix 500k

05

101520253035404550

25.9 25.95 26 26.05 26.1 26.15 26.2 26.25

-log1

0(P-

valu

e)

Physical position (Mb)

Association between OCA_HERC2 region and iris coloradjusted for ancestry sensitive markers

500KSNPs

498AncestrySensitiveSNPs

Random498SNPs

NoAdjustment(Orignial_AJHG)

4/27/2009 44New Jersey 2009

Use of the 500 ASMs for correcting the effect of population substructure

• Recall– Population substructure is only a problem when PHENOTIPIC and GENOTYPIC variation covariates

– Why not ascertaining markers that are associated to the particular spatial pattern of the phenotype?

);();;()|;( JQIJPQIJPQI nnn −=

“Amount of information of the phenotype (P) conditional on the genotype (J): How well could we correctly classify one individual given that we know his phenotype if we already know his genotype in a particular locus”

4/27/2009 45New Jersey 2009

PhenoASMs

LCT

HERC2

4/27/2009 46New Jersey 2009

PhenoASMs for lactose tolerance

4/27/2009 47New Jersey 2009

PhenoASMs for Crohn disease

AA AB BB Marginal phenotype

C P(AA)P(C|AA) P(AB)P(C|AB) P(BB)P(C|BB) ∑P(g)P(C|g)

D P(AA)P(D|AA) P(AB)P(D|AB) P(BB)P(D|BB) ∑P(g)P(D|g)

4/27/2009 48New Jersey 2009

PhenoASMs: a little bit further

• Update θ with a Metropolis algorithm• Update the covariance matrix of the proposal distribution by means of a “quasi‐perfect adaptive MCMC” (Andrieu and Atchade)

• Compute the harmonic mean of the likelihood in order to obtain a rough estimate of P(M|D)

4/27/2009 49New Jersey 2009

PhenoASMs: a Bayesian approach

4/27/2009 50New Jersey 2009

Phenotype-genotype association for eye color

TAS2R38

4/27/2009 51New Jersey 2009

Phenotype-genotype association for bitter taste

TAS2R38

4/27/2009 52New Jersey 2009

Phenotype-genotype association for bitter taste

4/27/2009 53New Jersey 2009

Phenotype-genotype association for bitter taste

• Low to moderate human population differentiation

• Mainly associated to geography

• No sharp discontinuities, except in particular genomic regions (selection?)

• Results depend on the clustering algorithm

• ASMs can improve the detection of population substructure

4/27/2009 54New Jersey 2009

Conclusions

• In is a good statistic for ascertaining markers to differentiate  predefined populations

• If a prior definition of a population is used, ASMs will tend to differentiate such population, independently of the biological meaning

• PhenoASMs as the next level of ASMs?

4/27/2009 55New Jersey 2009

Conclusions

M. Balascakova, C. Becker, J. Bertranpetit, L.A. Bindoff, D. Comas, U. Gether, C. Gieger, G. Holmlund, A. Kouvatski, M. Macek, I. Mollet, M. Nelson, P. Nuernberg, W. Parson, R. Ploski, A. Ruether, A. Sajantila, S. Schreiber, A. Tagliabracci, A. Uiterlinden, T. Werge, and E. Wichmann.

In collaboration with

4/27/2009 56New Jersey 2009

Acknowledgements

Tim LuMichael KrawczakManfred Kayser

4/27/2009 57New Jersey 2009

Petros Drineas

Andreas Wollstein

Peristeia Paschou

Thank you very much!

4/27/2009 58New Jersey 2009