alejandra uranga gabilan assistant professor aerospace ...uranga.usc.edu › presentations ›...

38
Boundary Layer Ingestion Benefit Quantification and Analysis Framework Alejandra Uranga Gabilan Assistant Professor Aerospace & Mechanical Engineering 6 th International Workshop on Aviation and Climate Change University of Toronto Institute for Aerospace Studies May 16–18, 2018

Upload: others

Post on 06-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Boundary Layer Ingestion

    Benefit Quantification and Analysis Framework

    Alejandra Uranga

    Gabilan Assistant Professor

    Aerospace & Mechanical Engineering

    6th International Workshop on Aviation and Climate ChangeUniversity of Toronto Institute for Aerospace Studies

    May 16–18, 2018

  • Outline

    1 Introduction

    2 D8 Aircraft: Conceptual Studies

    3 Experimental Measurement of BLI Benefit

    4 Analysis Framework: “Data Mining”

    5 Other BLI-Related Topics

    A. Uranga (USC) 1 / 37

  • Boundary Layer Ingestion (BLI)

    wake, or “draft”

    WastedKinetic Energy

    Zero NetMomentum

    combined wake and jet

    propulsor jet

    +

    +

    +

    +

    +

    +

    +

    -

    -

    -

    I BLI reduces wasted KE in combined jet+wake (mixing losses)

    I Long known to have large potential, never realized for aircraft

    I Ambiguous decomposition into drag and thrust(airframe) (propulsion system)

    ) use of power balance instead of force accounting

    A. Uranga (USC) 2 / 37

  • Summary

    I Closer integration of propulsion system and airframe provides newopportunities to reduce fuel burn and emissions of commercial aircraft

    I Boundary layer ingestion (BLI)

    I Novel configurations

    I System optimization (airframe, engine, operations)

    I Flow power and dissipation in power balance frameworkprovide useful metrics for integrated configurations

    I D8 wind tunnel testsI Quantification of aerodynamic BLI benefitI Proof-of-concept for use of BLI in transport aircraft

    I Aerodynamic framework developed to analyze aircraft with BLI

    A. Uranga (USC) 3 / 37

  • Major Collaborators

    MIT

    Mark DrelaEdward Greitzer

    UTRC

    Scott OchsGreg Tillman

    Pratt & Whitney

    Wes Lord (retired)

    University of Michigan

    Joaquim Martins

    NASA

    Scott Anders (LaRC)Greg Gatlin (LaRC)Judith Hannon (LaRC)James Heidmann (GRC)Natari Madavan (ARC)Shishir Pandya (ARC)Sally Viken (LaRC)

    A. Uranga (USC) 4 / 37

  • Outline

    1 Introduction

    2 D8 Aircraft: Conceptual Studies

    3 Experimental Measurement of BLI Benefit

    4 Analysis Framework: “Data Mining”

    5 Other BLI-Related Topics

    A. Uranga (USC) 5 / 37

  • Phase 1: D8 Aircraft Concept2008-2010

    MIT N+3 D8.2

    A. Uranga (USC) 6 / 37

    I B737-800/A320 class

    I 180 PAX, 3,000 nm range

    I Double-bubble lifting fuselagewith pi-tail

    I Two aft, flush-mounted enginesingest ⇠ 40% of fuselage BL

    I Cruise Mach 0.72

    �37% fuel with current tech(configuration)

    �66% fuel with advanced tech(2025-2035)

    No “magic bullet”

    E. Greitzer et al. 2010, NASA CR 2010-216794A. Uranga et al. 2014, AIAA 2014-0906 NASA-MIT Cooperative Agreement NNX08AW63A

  • A. Uranga (USC) 7 / 37

    Photos NASA/George Homich

  • System Impact of BLI

    BLI benefitsI

    Aerodynamic (direct) benefitsI Reduced jet and wake dissipationI Reduced nacelle wetted area

    ISystem-level (secondary) benefits

    I Reduced engine weightI Reduced nacelle weightI Reduced vertical tail sizeI Compounding from reduced overall weight

    “Morphing” sequence: B737-800 7! D8I Features of D8 introduced one at a time

    I Sequence of conceptual designs, optimized at each step (TASOPT)

    A. Uranga (USC) 8 / 37

    E. Greitzer et al. 2010, NASA CR 2010-216794

    M. Drela 2011, AIAA 2011-3970

  • Morphing Sequence: B737-800 7! D8.2 7! D8.6

    0

    0.2

    0.4

    0.6

    0.8

    188 %

    81 % 82 %

    67 % 66 %

    100 %op

    timiz

    ed73

    7-80

    0M

    =0.

    8,C

    FM56

    engi

    ne

    0

    slow

    toM

    =0.

    72

    1

    D8

    fuse

    lage

    ,pit

    ail

    2

    rear

    podd

    eden

    gine

    s

    3

    inte

    grat

    eden

    gine

    s,B

    LI

    4

    optim

    ize

    engi

    neB

    PR

    ,FP

    R

    5

    2010

    engi

    nes

    8

    FuelBurn

    63 %

    D8.2

    6 7 9 10

    2035

    engi

    nes

    2035

    mat

    eria

    ls

    win

    gbo

    t.N

    LF

    smar

    tstru

    ct

    48 %

    38 % 35 % 34 %

    D8.6- 18 %

    - 23 %

    - 21 %

    A. Uranga (USC) 9 / 37

  • Phase 3: Trade-O↵s Summary2015-2017

    Metric: Payload-Range Fuel Consumption =Fuel Energy Consumed

    Payload Weight⇥Range

    ID8 configuration benefit (20± 3)%relative to tube-and-wing at same cruise speed and technology

    IN+3 technology benefit (45± 2)% relative to 1990s tech

    I Tech advances benefit tube-and-wing more:D8 has lower structural/total weight and higher payload/total weight

    ISlowing down from Mach 0.78 to 0.72 (5± 1.5)%

    I Tube-and-wing benefits more from lower speed

    A. Uranga (USC) 10 / 37

    NASA-MIT Cooperative Agreement NNX15AM91A

  • Outline

    1 Introduction

    2 D8 Aircraft: Conceptual Studies

    3 Experimental Measurement of BLI Benefit

    4 Analysis Framework: “Data Mining”

    5 Other BLI-Related Topics

    A. Uranga (USC) 11 / 37

  • Phase 2: Airframe-Engine Integration2010-2015

    Quantification of D8 BLI benefit (experimental/computational)

    I Direct back-to-back comparison of BLI vs non-BLI

    I Wind tunnel tests of 1:11 scale (4m span) powered models

    A. Uranga (USC) 12 / 37

    Non-BLI(Podded)

    BLI(Integrated)

    NASA-MIT Cooperative Agreement NNX11AB35A

  • BLI Benefit

    BLI benefit (aerodynamic)

    Savings in power required for given net stream-wise force

    with BLI engines relative to non-BLI engines

    Power metric

    Mechanical flow power transmitted to the flow by the propulsors

    PK =

    I(po � po1)V · n̂ dS (incompressible)

    BLI benefit ⌘ PKnon-BLI � PKBLIPK

    non-BLI

    ����at given FX

    A. Uranga (USC) 13 / 37

  • Obtaining PK

    Method 1: Integration of the flow on propulsor stream-tube

    PK =

    Z

    exit

    (po � po1)V · n̂ dS �Z

    inlet

    (po � po1)V · n̂ dS

    exitinlet inlet exit

    Method 2: Conversion of electrical power provided to the propulsor motors

    PK|{z}mechanical

    flow power

    = ⌘f|{z}fan

    e�ciency

    PK/PS

    ⇥ ⌘m|{z}motor

    e�ciency

    PS/PE

    ⇥ PE|{z}electrical

    power

    A. Uranga (USC) 14 / 37

  • Phase 2: Demonstrated Aerodynamic BLI Benefit2010-2015

    0 0.02 0.04 0.06 0.08 0.1

    -0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    CPK

    CX

    BLI

    non-BLI

    unpowered

    net drag

    net thrust

    cruise

    Direct Rec = 0.68⇥106 (FHP)Direct Rec = 0.57⇥106 (FHP)Direct Rec = 0.57⇥106 (rake)Indirect Rec = 0.68⇥106Indirect Rec = 0.57⇥106

    0.04 0.045 0.05 0.055-4

    -3

    -2

    -1

    0

    1

    2

    3

    4⇥10�3

    CPK

    CX

    BLI

    non-BLI

    net drag

    net thrust

    cruise

    Indirect Rec = 0.57MIndirect Rec = 0.68MDirect Rec = 0.57M (rake)Direct Rec = 0.57M (FHP)Direct Rec = 0.68M (FHP)

    8.6% Benefitat Cruise

    A. Uranga (USC) 15 / 37

    NASA-MIT Cooperative Agreement NNX11AB35A

  • Outline

    1 Introduction

    2 D8 Aircraft: Conceptual Studies

    3 Experimental Measurement of BLI Benefit

    4 Analysis Framework: “Data Mining”

    5 Other BLI-Related Topics

    A. Uranga (USC) 16 / 37

  • BLI Benefit Sources

    1 Lower propulsor jet dissipation and higher propulsive e�ciency:more useful power put into the flow

    2 Lower surface dissipation (smaller nacelle size and surface velocities)

    3 Lower wake dissipation (partial elimination of viscous wake)

    4 Lower weight due to smaller nacelles and smaller engines,which in turn enables smaller wings, and thus even less weight

    1 + 2 + 3 = aerodynamic benefit: less flight power requiredfor a given airframe operating at the same lift coe�cient

    4 = system-level benefit after aircraft re-optimizations

    A. Uranga (USC) 17 / 37

  • Power Balance Method

    Consider mechanical energy sources and sinks:

    [ Net Force ] = [ Dissipation ] � [ Power In ]

    FX|{z}“drag – thrust”

    V1 = ( �surf + �wake + �vortex + �jet ) � ( PK|{z}mechanical

    flow power

    + ⇢⇢PV|{z}p dVpower

    )

    PK

    �wake

    �wake �vortex

    �vortex�surf

    �surf

    PK

    �jet

    �jet

    Non-BLI Configuration

    BLI Configuration

    A. Uranga (USC) 18 / 37

    M. Drela 2009, AIAA Journal 47(7)

  • Airframe Dissipation (1/2)

    I Conventional drag decomposition:

    D

    0V1 = �

    0surf

    + �0wake| {z }

    D0p V1

    (profile)

    + �0vortex| {z }

    D0i V1

    (induced)

    I Surface dissipation: �0surf

    = (1�fwake

    )D 0pV1

    �surf

    = (1�fwake

    )D 0p V1 � ��surf

    wheref

    wake

    ⌘�0wake

    �0surf

    + �0wake

    ��surf

    ⌘ �0surf

    � �surf

    > 0

    A. Uranga (USC) 19 / 37

    ��surf

  • Airframe Dissipation (2/2)

    I Wake dissipation:

    �0wake

    = fwake

    (�0surf

    + �0wake

    ) = fwake

    D

    0p V1

    �wake

    = (1�fBLI

    ) �0wake

    = (1�fBLI

    ) fwake

    D

    0p V1

    where fBLI

    ⌘ boundary layer ingestion fraction= fraction of total airframe viscous kinetic energy defect

    ingested by propulsors

    I Vortex dissipation: �vortex = �0vortex

    = D 0i V1

    assuming comparison is made with same airframe at fixed CL

    A. Uranga (USC) 20 / 37

    (1� fBLI

    )

  • Jet Dissipation

    I Jet dissipation (with or without BLI):

    �jet

    =

    ZZ

    exit

    1

    2

    (V�V1)2 dṁ

    =1

    2(V

    jet

    �V1)2 ṁ

    for ṁ = Nprop

    ⇢jet

    V

    jet

    A

    jet

    (total propulsor mass flow)

    and assuming uniform velocity Vjet

    across the jet

    ( jet pt non-uniformity ⌧ propulsor pt rise )

    A. Uranga (USC) 21 / 37

  • Mechanical Flow Power

    PK ⌘ �ZZ

    prop

    ⇥p1�p + 1

    2

    ⇢�V

    2

    1�V 2�⇤

    V · n̂ dS

    =1

    2

    �V

    2

    jet

    � V 21�ṁ

    | {z }(exit)

    � (�fBLI

    �0surf

    )| {z }

    (inlet)

    =1

    2

    �V

    2

    jet

    �V 21�ṁ + (1�f

    wake

    ) fBLI

    D

    0p V1| {z }

    extra power

    A. Uranga (USC) 22 / 37

    (1�fwake

    ) fBLI

    D

    0p V1| {z }

    extra power

  • Parametric Expressions

    Parametric expression for power required and stream-wise forcein terms of reference non-BLI configuration and propulsor operation

    CPK = Nprop

    "✓V

    jet

    V1

    ◆2

    � 1#⇢jet

    ⇢1

    V

    jet

    V1

    A

    jet

    A

    noz

    A

    noz

    S

    ref

    + (1�fwake

    ) fBLI

    C

    0Dp

    CX = C0D � fBLIC 0Dp ��C�

    surf

    � 2Nprop

    ✓V

    jet

    V1� 1

    ◆⇢jet

    ⇢1

    V

    jet

    V1

    A

    jet

    A

    noz

    A

    noz

    S

    ref

    I Valid with and without BLI, depending on value of fBLI

    I Jet properties (⇢jet

    ,Ajet

    ,Vjet

    ) with and without BLI may di↵er

    I Quantify BLI benefit relative to known non-BLI configuration

    A. Uranga (USC) 23 / 37

  • Major Design Parameters for BLI Aircraft

    (i) Ingested dissipation fBLI

    C

    0Dp

    (ii) How “well-designed” the BLI engine installation is ) ��surf

    (iii) Propulsor operating points for each of the configurations) respective propulsor jet velocities or mass flows

    A. Uranga (USC) 24 / 37

  • Data Mining: Application to D8 Wind Tunnel Tests

    Use expressions for CPK and CX to fit experimental data (CL = C0L = 0.64)

    0 0.02 0.04 0.06 0.08 0.1-0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    CPK

    CX

    BLI

    non-BLI

    unpowered

    8.2%BLI Benefit

    (CI = ± 0.3%)

    net drag

    net thrust

    cruise

    Data Rec = 0.57⇥106

    Power Balance Curve FitData Rec = 0.68⇥106

    A. Uranga (USC) 25 / 37

    C

    0D = 0.0370

    �C�

    surf

    = 0.0012

    f

    wake

    = 0.080

    A

    jet

    A

    noz

    = 0.955

    CX0

    = 0.0357

    CDairframe

    = 0.0338

  • Propulsive E�ciency ⌘p ⌘PK � �jet

    PK

    0.74 0.75 0.76 0.77 0.78 0.79 0.80.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    ⌘p

    PKP 0K

    non-BLI

    4.0%lower airframe

    dissipation

    8.2%benefit

    at equalA

    nozzle

    BLI

    propulsive efficiency gain

    A. Uranga (USC) 26 / 37

    63100

    30100

    Jet5.1%

    Surface2.5%

    Wake0.6%

    7 100

  • Variable Nozzle Area: Di↵erent Propulsor Designs

    0.74 0.75 0.76 0.77 0.78 0.79 0.80.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    ⌘p

    PKP 0K

    non-BLI

    BLI

    Plug BPlug A

    Plug C

    8.5% 8.2% 7.6%

    A. Uranga (USC) 27 / 37

  • Bases for Comparison

    0.4 0.6 0.8 1 1.20.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    PKP 0K

    non-BLIBLI

    Anozzle /A0

    nozzle

    equalVjet

    equal⌘p

    equalA

    nozzle

    equal�jet

    equalPK

    equalṁ

    A. Uranga (USC) 28 / 37

  • Bases for Comparison

    0.4 0.6 0.8 1 1.20.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    PKP 0K

    non-BLIBLI

    Anozzle /A0

    nozzle

    0.3

    0.4 equalVjet

    equal⌘p

    equalA

    nozzle

    0.1

    equal�jet

    equalPK

    equalṁ

    0.2

    fBLI = 0

    A. Uranga (USC) 29 / 37

  • Bases for Comparison

    0.4 0.6 0.8 1 1.20.88

    0.9

    0.92

    0.94

    0.96

    0.98

    1

    1.02

    PKP 0K

    non-BLIBLI

    Anozzle /A0

    nozzle

    0.3

    0.4 equalVjet

    equal⌘p

    equalA

    nozzle

    0.1

    equal�jet

    equalPK

    equalṁ

    0.2

    fBLI = 0

    A. Uranga (USC) 30 / 37

  • Outline

    1 Introduction

    2 D8 Aircraft: Conceptual Studies

    3 Experimental Measurement of BLI Benefit

    4 Analysis Framework: “Data Mining”

    5 Other BLI-Related Topics

    A. Uranga (USC) 31 / 37

  • High-E�ciency, High-OPR, Small Cores (N+3 Phase 2, P&W)

    Pratt & Whitney – Lord et al., AIAA 2015-0071 : reverse core engine arch.

    SAE INTERNATIONAL

    “Engine Architecture for High Efficiency at Small Core Size” Lord et al., AIAA 2015-0071 - Pratt & Whitney

    42 A. Uranga (USC) 32 / 37

  • D8 Transonic Design (N+3 Phase 3, U.Michigan)

    Transonic wing and engine integration MDO for Mach = 0.72, 0.78 :aero-structural optimization with loosely coupled engine model

    A. Uranga (USC) 33 / 37

  • Airframe-Propulsion Integration Challenges

    Integration lines strongly dependent on optimization’s objective function

    I Hard to identify MDO objective: need fully coupled engine model

    I High sensitivity of fan face condition to di↵user shape

    A. Uranga (USC) 34 / 37

  • Airframe-Propulsion Integration Challenges

    A. Uranga (USC) 35 / 37

  • ReferencesDrela, M., “Power Balance in Aerodynamic Flows”, AIAA Journal, Vol. 47, No. 7,

    2009, pp. 1761–1771. doi:10.2514/1.42409 [power balance method]

    Uranga, A., Drela, M., Greitzer, E., Titchener, N., Lieu, M., Siu, N., Huang, A., Gatlin,G., and Hannon, J., “Preliminary Experimental Assessment of the Boundary LayerIngestion Benefit for the D8 Aircraft”, AIAA-2014-0906, 52nd AIAA AerospaceSciences Meeting, SciTech 2014, National Harbor, Maryland, 13–17 Jan. 2014.doi:10.2514/6.2014-0906 [preliminary wind tunnel test results, morphing chart]

    Uranga, A., Drela, M., Greitzer, E. M., Hall, D. K., Titchener, N. A., Lieu, M. K., Siu,N. M., Casses, C., Huang, A. C., Gatlin, G. M., and Hannon, J. A., “Boundary LayerIngestion Benefit of the D8 Transport Aircraft”, AIAA Journal, Vol. 55, No. 11, pp.3693–3708, 2017. doi:10.2514/1.J055755 [wind tunnel tests]

    Uranga, A., Drela, M., Hall, D. K., and Greitzer, E. M., “Analysis of the AerodynamicBenefit from Boundary Layer Ingestion for Transport Aircraft”, AIAA Journal, inpress [analysis, “data mining”]

    Hall, D. K., Huang, A. C., Uranga, A., Greitzer, E. M., Drela, M., and Sato, S.,“Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft”, Journal ofPropulsion and Power, Vol. 33, No. 5, pp. 1118–1129, 2017. doi:10.2514/1.B36321[analysis]

    A. Uranga (USC) 36 / 37

  • Contact

    Alejandra Uranga, Ph.D.

    Gabilan Assistant Professor

    Aerospace & Mechanical Engineering Dept.University of Southern California

    Email: [email protected]: (213) 821 - 0846Web: uranga.usc.edu

    A. Uranga (USC) 37 / 37