ald for energy application - lithium ion battery and fuel cells

14
Publication Review Savannah and Fiji Systems ALD for Fuel Cells & Lithium Ion Batteries

Upload: laurent-lecordier

Post on 09-Jan-2017

517 views

Category:

Science


0 download

TRANSCRIPT

Page 1: ALD for energy application - Lithium ion battery and fuel cells

Publ ic a t ion Rev iew Savannah and F i j i Sy s tems

ALD for Fuel Cel ls &Lithium Ion Batter ies

Page 2: ALD for energy application - Lithium ion battery and fuel cells

Highlights

q Fullyoptimizedrecipes(waferscale)forLi(Li2O),Mn,Co,Ni,Fe,Pbinaryoxides

q Multicomponentoxiderecipeavailableforcathodeandelectrolyteq Carbon-freeLi2O(<0.1%)chemistryq Firsteverreportedquaternaryoxide(LiFePO4)q DemonstratedmulticomponentLioxidein300:1aspectratio(Expomode)q Glovebox integrationforSavannahandFijiq In-situQCMtocharacterizecompositionofmulticomponentoxidesq LowVaporPressureDelivery(LVPD)availableforwafer-scaleuniformity

andrun-to-runreproducibilityq MostpublishedLi-basedworkonUltratechtools

2

Page 3: ALD for energy application - Lithium ion battery and fuel cells

Lithiumionbattery

3

HIGHERPOWERHIGHERENERGY

Holmberg, S., and al., 3-D Micro and Nano Technologies for Improvements in Electrochemical Power Devices. 5, 171–203 (2014).

• SlowLiionmotion inandoutofstorageelectrode

• Longtransportpathforelectronsandions• Insufficient interfacialsurface• Extraweight(binder, separator,electrolyte)• Batterydegradationovertime• Safetyconcerns

Page 4: ALD for energy application - Lithium ion battery and fuel cells

Benefitsof3Dmicrobatteries

4

• Higherpowerdensityduetoshortdiffusion path

• Highercharge/dischargeratesfromhigher surface/volumeratio

• Improvedcyclelifeduetominimizationofmech.stressandALDpassivation

• Activeionstoragematerialsforelectrodes(anodeandcathode)

• Safeandnotflammable:SolidElectrolyte

Y.SYungetal.J.Electrochem.Soc.157,A75-A81(2010)

HugepotentialforMEMSduetosmallformfactor,lowweight,highenergydensity

Page 5: ALD for energy application - Lithium ion battery and fuel cells

Li2O/MnOx/Li2MnO4

5

420

400

380

360

340

320

QCM

Thic

knes

s [Å

]

46004400420040003800360034003200 time [s]

Mn /O3 Li / O3 Mn /O3 Li / O3 Mn /O3 Li / O3 Mn /O3

18 10

QC

M lo

adin

g

LiOtBu/ O3

10 10

100

CYCLES 10 10

x10

QCMduringLi2O/MnOx nanolaminate

500

400

300

200

100

0

LiO

x th

ickne

ss [Å

]

40003000200010000

time [s]

10 Å/cy

400

350

300

250

LiO

x [Å

]

550050004500400035003000

time [s]

1.54

1.52

1.50

1.48

1.46

1.44

1.42

1.40

1.38

n @633 nm

Thickness n (633nm)

LiOtBu / H2O

270˚C wait

x10 H2O

pulses

x100 H2O/TMA

pulses

Dehydroxylation

InsituSEduringLiOtBu/H2Oprocess

q Depositions atlowprecursortemperaturestolimitthermaldecomposition

q In-situcharacterizationofprocessspaceforLiOtBu andMn(EtCp)2chemistrieswithwaterandozone

q Saturationcurvesq Dehydroxylation ofLiOtBu/H2Ofilmsq Optimizeddeposition ofLi2Oand

MnOx nanolaminates filmsq Determinedconditions forgrowthof

MnOx onlithiumbasedoxides.q ControlledstoichiometryviaLi2O:

MnOx cycleratioq SIMSconfirmedQCM-basedLi:Mn

ratioandlow%contamination

Page 6: ALD for energy application - Lithium ion battery and fuel cells

CarbonfreeLi2O

6

CarbonfreeLi2ObyH2Othermal(>240˚C)

1.Kozen,A.C.J.Phys.Chem. C141106012144006 (2014).doi:10.1021/jp509298r

InsituXPSstudyofCarboncontaminationviaCO2

q Depositions inFijiF200withLiOtBu,H2OandO2 gas(PEALD)

q In-situcharacterizationwithXPS

q LiOtBu/H2O§ LiOHatT<240˚C§ Li2OatT>240˚C§ Carbon-freeLi2O

q LiOtBu/PO2 leadtoLi2CO3

q Carboncontamination fromCO2 viainsituXPSstudy

q Insituellipsometry studyofLiOHdehydrationvstemp.

Page 7: ALD for energy application - Lithium ion battery and fuel cells

LithiumTantalateSolid-stateElectrolyte

q Objectives§ Solid-stateelectrolytefor3D

microbattery§ Liionconductivity(1E-5– 1E-8S/cm),

lowelectronconductivityq Experimental

§ SavannahS100at225˚C,expomode§ LiOtBu@170˚C,Ta(OEt)5(190˚C)/H2O§ FinalAspectRatio~470

7

1.Liu,J.etal.,J.Phys.Chem.C117,20260–20267 (2013).

ConformaldepositionofLi5.1TaOz in300:1AAO

2E-8S/cmLi+conductivityinLi5.1TaOz at299K

Page 8: ALD for energy application - Lithium ion battery and fuel cells

LiPONSolidElectrolyte1.Kozen,A.C.,ChemMater150709110756002–13 (2015).

8

q Experimental§ FIJIF200at250˚C§ LiOtBu@165˚C/H2O/

Trimethylphosphate/N2 plasma§ Depositedoncarbonnanotube sponge

scaffoldq Results

§ FirstreportedLiPONALDprocess§ 1.45E-7S/cmhighestpublished

conductivitybyALD§ Low%C<1%

SequenceforLiPON ALDusingTMP

Ionicconductivityvs.%N CVforLiPON onSiandCu

Stoichiometry/crystallinityvs%N

Page 9: ALD for energy application - Lithium ion battery and fuel cells

LiFePO4 cathode

9

q Objectives§ Firstquaternaryoxideforbatteryreported§ CathodematerialsforLi-ionbattery§ Highspecificcapacity,lowcost,thermal

stability,environmentallyfriendly§ Improverateperformancevia

nanostructuring

q Experimental§ SavannahS100at300˚C,expomode§ FerroceneFeCp2(130˚C)/O3,

TrimethylphosphateTMPO(75˚C)/H2OandLiOtBu(180˚C)/H2O

§ DepositedonSiandCNT

1.Liu,J.etal.(2014).doi:10.1002/adma.201401805 ConformalLiFePO4 oncarbonnanotubes

BatteryperformancesusingLiFePO4 electrolyte

Page 10: ALD for energy application - Lithium ion battery and fuel cells

RoleofFePO4 topreventoxidationofelectrolyte

FePO4 onLiNi0.5Mn1.5O4 cathode

10

q Achievement§ UltrathinFePO4 onLNMO

powder§ Electrochemicallyactive

barrierbetweenelectrolyteandLNMO

§ ImprovescapacityfadingandLNMOcapacity

q Experimental§ FePO4 at300˚C,Savannah

S100(FeCp2/O3,TMPO/H2O)

1.Xiao,B.etal.Adv.Sci.(2015).doi:10.1002/advs.201500022 FESEM&HRTEMofLMNOwith20cy.FePO4

Impactofn-cyclesFePO4 onLMNOelectrochem.pp.

n=0 n=20cy

Page 11: ALD for energy application - Lithium ion battery and fuel cells

Cu2ScathodeforLIB

q Objectives§ Cu2Sdeposited onsinglewallcarbon

nanotubes

q Experimental§ SavannahS200at135˚C,expomode§ CuAMD(150˚C)and1%H2S§ SWCNTfunctionalizedwith9minO3

q Results§ Core-shellSWCNT-n-Cu2Sexhibits

highchargedischarge/stability§ highcapacity(260mA/g)§ >99%Coulombicefficiency

11

1Meng,X.,JournalofPowerSources,2015,280,621–629[ArgonneNL]

Cu2SonSWCNT(100,200,400,600cycles)

Charge/dischargeforfirst3cyclesat1000mA/g

Page 12: ALD for energy application - Lithium ion battery and fuel cells

KeyReferences(upto01/15)q Xiao,B.etal. UnravellingtheRoleofElectrochemicallyActiveFePO4CoatingbyAtomicLayer

DepositionforIncreasedHigh-VoltageStabilityofLiNi0.5Mn1.5O4CathodeMaterial.AdvancedScience n/a–n/a(2015).doi:10.1002/advs.201500022

q Meng,X.,Riha,S.C.,Libera,J.A.,Wu,Q.,Wang,H.-H.,Martinson,A.B.F.,&Elam,J.W.(2015).Tunablecore-shellsingle-walledcarbonnanotube-Cu2S networked nanocompositesashigh-performancecathodesforlithium-ionbatteries.JournalofPowerSources,280,621–629.doi:10.1016/j.jpowsour.2015.01.151

q Liu,J.,Xiao,B.,Banis,M.N.,Li,R.,Sham,T.-K.,&Sun,X.(2014).Atomiclayerdepositionofamorphous ironphosphates oncarbonnanotubesascathodematerialsforlithium-ionbatteries.ElectrochimicaActa.doi:10.1016/j.electacta.2014.12.158

q Kozen,A.C.,Pearse,A.J.,Lin,C.-F.,Schroeder,M.A.,Noked,M.,Lee,S.B.,&Rubloff,G.W.(2014).AtomicLayerDepositionandIn-situCharacterizationofUltracleanLithiumOxideandLithiumHydroxide.TheJournalofPhysicalChemistryC,141106012144006.doi:10.1021/jp509298r

q Liu,J.,Banis,M.N.,Sun,Q.,Lushington,A.,Li,R.,Sham,T.-K.,&Sun,X.(2014).RationalDesignofAtomic-Layer-DepositedLiFePO4asaHigh-PerformanceCathodeforLithium-IonBatteries.AdvancedMaterials,n/a–n/a.doi:10.1002/adma.201401805

q Wang,B.,Liu,J.,Sun,Q.,Li,R.,Sham,T.-K.,&Sun,X.(2014).Atomiclayerdepositionoflithiumphosphates assolid-stateelectrolytesforall-solid-statemicrobatteries.Nanotechnology,25(50),504007.doi:10.1088/0957-4484/25/50/504007

q Liu,J.,Banis,M.N.,Li,X.,Lushington,A.,Cai,M.,Li,R.,etal.(2013).AtomicLayerDepositionofLithiumTantalateSolid-StateElectrolytes.TheJournalofPhysicalChemistryC,117(39),20260–20267.doi:10.1021/jp4063302

12

Page 13: ALD for energy application - Lithium ion battery and fuel cells

FUELCELL

13

Page 14: ALD for energy application - Lithium ion battery and fuel cells

Y2O3 andYSZ

14

q Experimental§ SavannahS200at200-350˚C§ Y(EtCp)2 @120˚C(LVPD)/TDMAZr/H2O

q Results§ 0.8Å/cycleGPC@220˚C,2.1index,0.8%

Uniformityon200mm§ QCMmetrologyshowsgoodgrowthofY2O3

onZrO2

§ CompositioncontrolbyratioofY2O3 :ZrO2cycles

§ RBScharacterization§ Composition inagreementwithALD

ratioandQCMdata§ Carboncontaminationnotdetected

§ XPSandXRDcharacterizationunderway

QCMresponseduringYSZgrowth

GPC&indexofY2O3 vs temp.

252

250

248

246

244

242

240

Thic

knes

s [Å]

36603640362036003580356035403520 time [s]

1Lecordier, L.ECSTransactions69,109–116 (2015)[UltratechCNT].