alberta imaging symposium 2011

28
2 2 1 1 a a p p r r i i l l 2 2 0 0 1 1 1 1 * HOPEWELL PROFESSORSHIP ALBERTA IMAGING SYMPOSIUM 2011 A Celebration of Excellence in Provincial Medical Imaging Research Health Science Centre G500 University of Calgary 10h3018h00

Upload: lamnhu

Post on 13-Feb-2017

232 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ALBERTA IMAGING SYMPOSIUM 2011

222111 aaappprrriiilll 222000111111 *  HOPEWELL PROFESSORSHIP ALBERTA IMAGING SYMPOSIUM 2011 A  Celebration  of  Excellence  in  Provincial  Medical  Imaging  Research  

Health  Science  Centre  G500   University  of  Calgary   10h30-­‐18h00  

Page 2: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -1- *    

 Thursday  21  April  2011,  10h30-­18h00  Registration  Desk  opens  at  10h00  University  of  Calgary    Meeting  Location .............................................................................................................................................................................. 1  Symposium  Program ...................................................................................................................................................................... 2  Welcome  Letter ................................................................................................................................................................................. 4  Abstracts .............................................................................................................................................................................................. 5  Hongmei  Zhu,  PhD  -­‐  Mathematics  &  Statistics,  York  University ................................................................................................5  Robert  Kosior,  PhD    -­‐  Biomedical  Engineering,  University  of  Calgary.....................................................................................6  Hing  Cheng,  BSc  -­‐  Radiology,  University  of  Calgary .........................................................................................................................7  Yunyan  Zhang,  MD,  PhD  -­‐  Radiology  and  Clinical  Neurosciences,  University  of  Calgary ................................................8  Nathan  Becker,  MSc  -­‐  Physics  and  Astronomy,  University  of  Calgary .....................................................................................9  Kelvin  Chow,  BSc  -­‐  Biomedical  Engineering,  University  of  Alberta .......................................................................................10  Karla  Ponjavic,  MSc  –  Neuroscience,  University  of  Lethbridge ...............................................................................................11  Rebecca  Feldman,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta............................................................................12  Shantanu  Banik,  MSc  -­‐  Electrical  and  Computer  Engineering,  University  of  Calgary ....................................................13  Stefanie  Hassel,  PhD  –  Psychiatry,  University  of  Calgary ...........................................................................................................14  Robert  Stobbe,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta ..................................................................................15  Amber  Doiron,  PhD  -­‐  Chemical  Engineering  and  Radiology,  University  of  Calgary........................................................16  Francois  Moreau,  MD  -­‐  Clinical  Neurosciences,  University  of  Calgary .................................................................................17  Mirza  Faisal  Beg,  PhD  -­‐  School  of  Engineering  Science,  Simon  Fraser  University...........................................................18  Yue  Wang,  MD  -­‐  Faculty  of  Rehabilitation  Medicine,  University  of  Alberta .......................................................................19  Jodi  Harker,  MBBS  -­‐  Stephenson  CMR  Centre,  Libin  Cardiovascular  Institute .................................................................20  Dongming  Zhou,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta ...............................................................................21  Alison  King,  PhD  –  Radiology,  University  of  Calgary ....................................................................................................................22  Lisa  Marie  Langevin,  PhD  -­‐  Behavioural  Research  Unit,  Alberta  Children’s  Hospital....................................................23  Stefano  Peca,  MSc  -­‐  Seaman  Family  MR  Centre,  University  of  Calgary.................................................................................24  

Invited  Speakers  and  Registered  Attendees...................................................................................................................... 25  Additional  Imaging  Meeting  of  Interest............................................................................................................................... 27      Meeting  Location  Foothills  Campus  –  3330  Hospital  Drive  NW,  Cal-­gary    Registration  –  outside  Health  Sciences  Centre  -­‐  Room  G500  Sessions  -­‐  Health  Sciences  Centre  -­‐  Room  G500  Lunch  –  Health  Medical  Research  Bldg  -­‐  West  Atrium    Paid  parking  available  in  Lot  6  Parkade  located  imme-­‐diately  to  the  north  of  the  Health  Sciences  complex.    Lunch  provided  to  delegates  with  paid  registration.  

Page 3: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -2- *    

Symposium  Program    

Time Speaker Title

10:30 Dr Richard Frayne University of Calgary

Welcome

Session 1 – Chair: Dr Cheryl McCreary, University of Calgary

10:40 Dr Hong-mei Zhu York University

Time-frequency analysis and its application in under-standing brain functional connectivity

11:20 Dr Rob Kosior University of Calgary

Elucidating Seizure Foci with Voxel-Based Relaxome-try

11:35 Mr Hing Cheng University of Calgary

Automatic Identification of Abnormalities in Medical Images via Fast Deformable Co-Registration

11:50 Dr Yunyan Zhang University of Calgary

MRI Texture Analysis Differentiates Persistent and Transient T1 ‘Black holes’ in Multiple Sclerosis

12:05 Mr Nathan Becker University of Calgary

Cone-Beam CT Based Lung Tumour Motion Estima-tion

12:20 Mr Kelvin Chow University of Alberta

Myocardial Tissue T1 Mapping

12:35 Ms Karla Ponjavic University of Lehtbridge

Electrophysiological Correlates of Auditory Distrac-tion as Manifested in Post-secondary Adults with and without Attention Deficit Hyperactivity Disorder

Session 2 – Chair: Dr Richard Thompson, University of Alberta

13:45 Dr Rebecca Feldman University of Alberta

Fluid Suppressed Sodium Magnetic Resonance Imag-ing of the Human Knee

14:00 Mr Shantanu Banik University of Calgary

Detection of Architectural Distortion in Prior Mam-mograms of Interval-cancer Cases

14:15 Dr Stefanie Hassel University of Calgary

Differential Activation during an Affective Go-NoGo Task in Bipolar Disorder

14:30 Dr Robert Stobbe University of Alberta

Exploring New Ways to Get A-round in 3D k-Space

14:45 Dr Amber Dorion University of Calgary

The Design of a MR Molecular Imaging Agent for De-tection of Atherosclerotic Plaques

Page 4: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -3- *    

Time Speaker Title

15:00 Dr Francois Moreau University of Calgary

Absolute Oxygen Measurements in Stroke, Prelimi-nary Findings

15:15 Dr Mizra Faisal Beg Simon Fraser University

Computational Anatomy – Tools for mapping brain structure and applications to differential discrimina-tion in dementia

Session 3 – Chair: Dr Robert Kosior, University of Calgary

16:15 Dr Yue Wang University of Alberta

Quantitative Measures of Modic Changes on Lumbar Spine MRI: Intra- and Inter-rater Reliability

16:30 Dr Jodi Harker University of Calgary

Assessment of Significant Coronary Artery Stenosis using Blood Oxygen Level Dependent Cardiovascular Magnetic Resonance (BOLD-CMR)

16:45 Dr Dongming Zhou University of Alberta

Regional Cortical Thickness and Asymmetry Differ-ences from Children to Older Adults

17:00 Dr Alison King University of Calgary

Quite a stretch: Deep knee bends studied with low-field MRI

17:15 Dr Lisa-Marie Langevin University of Calgary

Examining the Common Neurobiological Basis of Mo-tor and Attention Deficits in Neurodevelopmental Disorders

17:30 Mr Stefano Peca University of Calgary

The Hemodynamic Response in fMRI: Applications in Cerebral Amyloid Angiopathy

17:45 Dr Richard Frayne University of Calgary

Wrap-up and Acknowledgements

Page 5: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -4- *    

1430 29 t h S t reet NW, Calgary , Alber ta , Canada T2N 2T9 • mrcentre.ca

Thursday 21 April 2011 Dear Invited Speakers and Symposium Attendees:

Thank you very much for attending the inaugural Hopewell Professorship Alberta Imaging Symposium.

Today’s program will highlight achievements from across Alberta in the field of medical imaging that were accomplished during 2010. The focus will be on invited research updates given by senior research trainees, fellows and staff. These individuals were selected from a group of distinguished individuals nominated by faculty at the Universities of Alberta, Calgary, and Lethbridge. They represent a unique cross-section of the exciting imaging research happening across our province.

A special thank you is also due to Drs Faisal Beg (from Simon Fraser University) and Hong-mei Zhu (York University, Toronto) for coming to and presenting at our Symposium. We not only look forward to their presentations, but to the opportunity to engage with them during the day.

Finally, special recognition is due to the Hopewell Group of Companies for funding the Professorship that has helped support this Symposium.

I hope you have an enjoyable day listening to our achievements.

Sincerely,

Richard Frayne, PhD Canada Research Chair in Image Science Hopewell Professor of Brain Imaging

hi Faculty of Medicine

Departments of Radiology and Clinical Neurosciences Seaman Family MR Research Centre, MRG013 Telephone: 403 944 8321 Fax: 403 270 7907 Email: [email protected]

Welcome  Letter  

Page 6: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -5- *    

Abstracts  

Presentation 1.1 – 10:40

Hongmei  Zhu,  PhD  -­‐  Mathematics  &  Statistics,  York  University  Dr  Zhu  is  an  Associate  Professor  at  the  Department  of  Mathematics  and  Statistics,  York  University.  She  holds  a  PhD  in  Applied  Mathematics  at  the  University  of  Wa-­‐terloo  and  worked  as  a  postdoctoral  fellowship  with  Dr  Ross  Mitchell  at  the  Sea-­‐man  MR  Centre  at  Foothills  Hospital,  University  of  Calgary  between  2001  and  2004.  Her  research  interests  are  in  the  areas  of  time-­‐frequency  analysis,  data  analysis,  numerical  computations  and  their  applications  in  real-­‐world  problems  arisen  from  biomedicine  and  other  industries.  

Time-­‐frequency  Analysis  and  its  Application  in  Understanding  Brain  Functional  Connectivity  

C  Liu,  W  Gaetz,  TPL  Roberts,  H  Zhu  Time-­‐frequency  analysis  is  a  powerful  tool  for  understanding  non-­‐stationary  characteristics  of  data  such  as  brain  signals.  It  can  not  only  reveal  brain  activities  occurred  in  a  single  brain  region  but  also  be  used  to  derive  statistical  measures,  such  as  coherence,  to  describe  functional  dynamics  between  different  brain  regions.  In  this  talk,  we  address  the  use  of  time-­‐frequency  analysis  to  estimate  time-­‐varying  statistical  measures  and  then  apply  them  to  investigate  motor  cortex  activities  under  the  multisource  interference  task.  

Page 7: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -6- *    

Presentation 1.2 – 11:20

Robert  Kosior,  PhD    -­‐  Biomedical  Engineering,  University  of  Calgary  Robert  Kosior  is  a  researcher  at  the  Seaman  Family  MR  Research  Centre,  located  in  the  Foothills  Medical  Centre  in  Calgary,  Alberta.  This  past  December,  he  defended  his  PhD  thesis  in  Biomedical  Engineering  at  the  University  of  Calgary  where  he  also  obtained  a  BSc  in  Mechanical  Engineering  in  2005.  His  PhD  thesis  was  focused  on  quantitative  MR  imag-­‐ing  for  stroke  and  epilepsy  under  the  supervision  of  imaging  expert  Dr  Richard  Frayne  at  the  Seaman  Family  MR  Centre.  His  research  involves  close  collaboration  with  other  scien-­‐tists  and  clinicians  including  experts  from  the  Hotchkiss  Brain  Institute.  A  key  contribu-­‐tion  of  his  graduate  work  for  stroke  imaging  was  the  development  of  an  MR  topographical  score  using  a  digital  brain  atlas,  based  on  a  stroke  scoring  scale  called  the  Alberta  Stroke  Program  Early  CT  Score,  or  AS-­‐PECTS  scale.  By  using  MR  scans  and  automated  processing  methods,  Kosior  has  developed  a  more  objective  way  of  apply-­‐ing  the  topographical  score.  He  is  currently  working  in  close  collaboration  with  Dr  Paolo  Federico,  an  epileptologist,  on  voxel-­‐based  quantitative  MR  imaging  of  epileptic  patients.  The  goal  of  this  work  is  to  improve  how  abnormal  tissue,  or  sei-­‐zure  foci,  may  be  identified  in  the  brain  using  statistical  mapping  techniques.  

Elucidating  Seizure  Foci  with  Voxel-­‐Based  Relaxometry  

RK  Kosior,  RJ  Sharkey,  R  Frayne,  P  Federico  Purpose:  Voxel-­‐Based  Relaxometry  (VBR)  is  a  technique  in  which  a  voxel-­‐level  statistical  comparison  of  quantitative  MR  T2  maps  is  performed  to  identify  regions  with  significantly  elevated  T2  relaxation  time.  In  cases  of  an  indeterminate  diagnosis,  single-­‐subject  VBR  may  provide  important  information  to  corroborate,  refute,  or  substitute  indeterminate  information  from  the  other  sources.  Our  objective  was  to  assess  the  performance  of  single-­‐subject  VBR  at  3  T  as  a  diagnostic  tool  for  patients  whose  diagnosis  of  epilepsy  or  seizure  focus  location  is  uncertain.  Methods:  Fifty-­‐nine  patients  with  possible  epilepsy  or  known  epilepsy,  but  an  unknown  focus  were  selected  for  assessment.  All  subjects  were  scanned  at  3  T  using  a  modified  Carr-­‐Purcell-­‐Meiboom-­‐Gill  MR  sequence.  Forty-­‐two  healthy  subjects  were  used  as  controls.  VBR  was  performed  on  a  single-­‐subject  basis  at  a  significance  level  of  α  =  0.001.  The  diagnosis  of  each  pa-­‐tient  was  determined  based  on  history,  neuropsychological  testing,  EEG,  conventional  structural  MR  and  in  some  cases,  video-­‐EEG  monitoring  (VEM)  and/or  single  photon  emission  computerized  tomography.  Patients  were  grouped  based  on  whether  the  diagnosis  of  epilepsy  was  in  question  and  whether  there  was  a  suspected  focus.  VBR  detections  were  assessed  across  the  brain,  and  a  VBR  severity  score  was  determined  based  on  the  presence  of  VBR  significance  in  any  of  13  prede-­‐fined  regions  per  hemisphere.    Results:  All  patient  groupings  exhibited  more  median  VBR  abnormalities  than  controls.  This  difference  was  significant  (p  <  0.05)  between  all  patients  and  controls,  and  between  patients  with  known  epilepsy  and  controls.  Eighteen  of  the  27  pa-­‐tients  with  a  suspected  focus  (67%)  exhibited  a  VBR  abnormality  in  the  suspected  focus,  with  additional  regions  of  in-­‐volvement  being  elucidated.  At  least  one  VBR  detection  was  seen  in  45  of  the  59  patients  (76%),  versus  18  of  the  42  control  subjects  (43%).  In  34  of  the  patients,  the  structural  MR  was  completely  normal,  with  27  of  these  patients  still  showing  at  least  one  VBR  detection  (79%).  Patients  with  the  most  precisely  localized  seizure  focus  (i.e.  with  a  suspected  lobe  and  side)  also  had  the  highest  likelihood  of  having  at  least  one  VBR  detection  (86%).  Clinical  follow-­‐up  was  available  for  54  of  59  pa-­‐tients  (92%),  where  new  clinical,  imaging,  or  EEG  information  was  obtained  and  re-­‐evaluated.  In  seven  of  these  patients,  further  investigations  or  clinical  information  allowed  reclassification  from  their  original  groupings  to  have  a  suspected  fo-­‐cus  or  confirmed  focus.  With  reclassification,  four  of  the  seven  patients  had  VBR  findings  that  were  predictive  of  their  sub-­‐sequent  clinical  reclassification  of  their  epilepsy.  Conclusions:  Single-­‐subject  VBR  confirmed  the  seizure  focus  in  patients  with  suspected  seizure  foci  but  with  an  unremark-­‐able  MR  scan  and  it  identified  potential  seizure  foci  in  patients  with  unknown  seizure  foci.  Because  it  is  possible  for  VBR  maps  to  be  generated  in  a  semi-­‐automated  fashion  with  minimal  user  interaction,  VBR  should  be  considered  in  patients  with  epilepsy  in  whom  conventional  structural  MR  imaging  is  not  informative.  An  algebraic  T2  estimation  approach  is  being  investigated  for  improved  detection  sensitivity  of  seizure-­‐related  abnormalities  

Page 8: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -7- *    

Presentation 1.3 – 11:35

Hing  Cheng,  BSc  -­‐  Radiology,  University  of  Calgary  Hing  received  B.Sc.  in  Math  and  Physics  in  1970,  and  was  MPhil.  and  PhD  candi-­‐dates  in  Applied  Math  from  1990  to  1995  in  Hong  Kong,  (candidacy  terminated  due  to  immigration).  He  had  done  research  in  stock  cutting,  scheduling,  plastic  in-­‐jection  moulding,  multi-­‐agent  system  (University  of  Calgary),  prosthetics,  orthotics  &  scoliosis  imaging  (National  Research  Council,  University  of  C),  steelmaking  (Pre-­‐carn,  University  of  Alberta),  rail  transportation,  radiotherapy  patient  positioning  (University  of  Toronto),  as  well  as  3D  imaging  and  image  processing  for  reverse  engineering,  weapon  excavation,  baby  skull  deformation,  and  3D  movies,  etc.  From  January  2009,  he  is  Research  Associate  in  Imaging  Informatics  Lab,  University  of  Calgary,  where  he  has  completed  the  following  projects:  Fast,  accurate  computa-­‐tion  of  1D  S-­‐Transform  amplitudes  for  long  time  series,  with  localized  filtering;  Real-­‐time,  accurate  computation  of  2D  S-­‐Transform  amplitudes  for  medical  images;  Fast,  accurate  computation  of  2D  S-­‐Transform  statistics  for  regions  of  interest  in  medical  images;  Deformable  co-­‐registration  of  highly  dissimilar  medical  images,  and  fast,  automatic  identification  of  abnormalities.  His  future  work  will  be  in  texture-­‐based  region  growing,  segmenta-­‐tion,  classification  and  image  search.  

Automatic  Identification  of  Abnormalities  in  Medical  Images  via  Fast  Deformable  Co-­‐Registration  

H  Cheng  We  present  a  method  to  perform  fast  deformable  co-­‐registration  between  two  dissimilar  medical  images.  We  employ  several  techniques  to  improve  the  efficiency  and  effectiveness  of  the  co-­‐registration.  We  then  compare  the  co-­‐registered  images  to  identify  prominent  outliers.  In  particular,  if  one  image  is  normal  and  the  other  has  disease,  then  we  are  able  to  identify  the  abnormalities  in  the  latter.  We  can  also  find  asymmetries  in  a  single  im-­‐age  by  co-­‐registering  it  with  its  mirror  image.  This  may  be  useful  for  detecting  lesions  in  brain  images.  

Page 9: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -8- *    

Presentation 1.4 – 11:50

Yunyan  Zhang,  MD,  PhD  -­‐  Radiology  and  Clinical  Neurosciences,  Uni-­‐versity  of  Calgary  Dr  Zhang  is  a  Radiologist  and  a  scientist  in  medical  image  processing  and  analysis.  She  completed  her  PhD,  with  the  support  of  Studentships  from  NSERC  and  the  De-­‐partment  of  Medical  Sciences,  in  2007  in  Biomedical  Engineering  at  the  University  of  Calgary  following  her  medical  studies  in  China.  She  then  went  on  to  complete  post-­‐doctoral  studies  at  the  Universities  of  Calgary  and  British  Columbia,  supported  by  Fellowships  from  Teva  Neuroscience,  MS  Society  of  Canada,  and  The  Network  of  mul-­‐tiple  sclerosis  (MS)  Clinics,  Canada.  In  the  meantime,  she  has  completed  a  mini  Fel-­‐lowship  in  Neuroradiology,  University  of  Calgary.  Currently,  Dr  Zhang  is  finishing  a  Clinical  Fellowship  in  Neurology  specializing  in  MR  imaging  in  MS,  and  taking  on  a  research  assistant  professor  posi-­‐tion  in  the  Departments  of  Radiology  &  Clinical  Neurosciences,  University  of  Calgary,  where  she  is  also  a  primary  member  of  the  HBI  MS  Program.  

MRI  Texture  Analysis  Differentiates  Persistent  and  Transient  T1  ‘Black  Holes’  in  Multiple  Sclerosis  

Y  Zhang,  A  Traboulsee,  Y  Zhao,  L  Metz,  DK  Li  Introduction:  New  contrast-­‐enhancing  lesions  (CELs)  in  multiple  sclerosis  (MS)  are  frequently  accompanied  by  hypointen-­‐sity  on  T1-­‐weighted  MRI,  namely  acute  black  holes  (ABHs).  An  ABH  may  persist  (pABH)  or  resolve  (transient  ABH,  tABH)  over  time.  While  a  pABH  is  thought  to  represent  irreversible  tissue  destruction,  the  conversion  of  tABH  parallels  remyelina-­‐tion.  Remyelinated  lesions  may  help  to  ensheath  the  denuded  axon  and  thereby  assist  to  restore  compromised  CNS  func-­‐tion.  However,  pABHs  cannot  be  distinguished  from  tABHs  on  conventional  images.  MRI  texture  analysis  shows  promise  for  detecting  subtle  abnormalities  in  signal  intensity  and  pattern.  Pilot  data  suggests  that  increased  texture  heterogeneity  cor-­‐responds  to  inflammation  and  demyelination  in  murine  mice.  The  goal  was  to  compare  texture  characteristics  in  pABH  and  tABH  on  T1-­‐weighted  MRI  in  MS.    Method:  Twenty  RRMS  patients  were  scanned  at  months  1,  3,  8  and  9.  Pre-­‐  and  post-­‐contrast  T1-­‐weighted  and  T2-­‐weighted  images  were  acquired  at  3T.  New  CELs  that  appeared  simultaneously  T1  hypointense  at  month  1  or  3  (onset)  were  identi-­‐fied.  An  ABH  was  classified  as  a  pABH  or  a  tABH  based  on  its  visual  appearance  at  month  8  or  9  (followup)  pre-­‐contrast  T1-­‐weighted  MRI.  NAWM  from  the  same  patient  was  evaluated  for  control.  T1-­‐weighted  images  were  corrected  for  non-­‐uniformity  and  3D  co-­‐registered  serially.  Regions  of  interest  (ROIs)  were  drawn  around  each  ABH  at  onset  and  were  super-­‐imposed  to  the  registered  MRI  at  followup  to  ensure  evaluation  of  the  same  region  over  time.  MRI  texture  was  calculated  using  a  spatial  frequency  based  technique  for  each  pixel  in  a  ROI.  Texture  difference  was  assessed  using  multivariate  re-­‐gression  analysis.  The  p  ≤  0.05  was  set  as  significant.  Results:  There  were  15  ABHs  (8  pABHs  and  7  tABHs)  identified  from  9  patients.  Nine  NAWM  regions  were  studied.  Differ-­‐ent  local  spectra  were  found  between  ABHs  and  NAWM  (p  =  0.02)  particularly  over  low  frequency  ranges.  Unlike  the  smooth  pattern  in  NAWM,  focal  amplitude  increases  were  observed  in  ABHs,  which  span  broader  and  of  higher  energy  in  pABHs  than  in  tABHs.  Furthermore,  the  spectral  energy  over  low  frequencies  was  significantly  greater  in  the  pABHs  than  that  in  the  tABHs  (p  <  0.05),  which  was  both  larger  than  that  in  the  NAWM.  High  frequency  spectrum  did  not  differ  (p  >  0.05).  Discussion:  This  preliminary  study  showed  that  low  frequency  energy  representing  coarse  texture  was  greater  in  the  pABHs  than  that  in  the  tABHs  several  months  before  visible  evolution.  It  may  indicate  that  pABHs  contain  more  severe  tis-­‐sue  damage  and  therefore  higher  structural  heterogeneity  than  the  tABHs,  which  is  minimal  in  the  plaque-­‐free  NAWM.  Sub-­‐sequently,  increased  complexity  at  the  initiation  of  lesion  formation  in  pABHs  may  have  confounded  repair  compared  to  tABHs.  This  is  consistent  with  previous  results  showing  that  greater  coarse  texture  at  lesion  onset  related  to  less  recovery  8  months  later.  This  texture  analysis  approach  may  have  the  potential  to  predict  the  fate  of  ABHs,  which  could  be  very  useful  for  a  precise  quantification  of  disease  activity  and  evaluation  of  therapeutic  efficacy  aimed  at  neuroprotection  or  repair.    

Page 10: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -9- *    

Presentation 1.5 – 12:05

Nathan  Becker,  MSc  -­‐  Physics  and  Astronomy,  University  of  Calgary  Nathan  completed  a  BSc  Degree  with  Honours  in  Physics  from  the  University  of  the  Fraser  Valley  in  Abbotsford,  BC.  In  2006,  he  began  a  Masters  degree  at  the  University  of  Calgary  in  the  Physics  and  Astronomy  Department,  specializing  in  Radiation  Oncology  Physics.  In  2008,  he  directly  transferred  to  the  PhD  program,  and  is  currently  in  the  final  year  of  the  program,  with  future  plans  to  complete  a  residency  in  medical  physics.  His  research  involves  lung  tumour  motion  man-­‐agement  for  radiation  therapy.  He  has  developed  a  novel  technique  to  measure  the  internal  motion  of  lung  tumours,  using  a  new  imaging  modality  called  cone-­‐beam  computed  tomography  (CT).  

Cone-­‐Beam  CT  Based  Lung  Tumour  Motion  Estimation  

N  Becker,  I  Kay,  S  Quirk,  H  Lau,  W  Smith  When  a  lung  cancer  patient  is  treated  with  radiation  therapy,  the  respiratory  induced  motion  of  the  tumour  can  change  from  day  to  day.  Conventional  cone-­‐beam  CT  (CBCT)  imaging  provides  a  static  3D  image  that  is  used  to  precisely  localize  the  tumour  prior  to  treatment,  but  tumour  motion  can  cause  imaging  artifacts.    We  present  a  novel  algorithm  to  estimate  the  trajectory  of  an  implanted  fiducial  marker  from  the  raw  CBCT  projection  data  .  During  a  CBCT  scan,  approximately  600  projection  images  are  captured  as  the  onboard  X-­‐ray  imager  (OBI)  com-­‐pletes  a  revolution  around  the  patient.  The  lung  tumour  may  be  difficult  to  identify  in  these  projection  images,  so  a  fiducial  marker  implanted  near  the  tumour  can  act  as  a  surrogate  for  tumour  motion.  Our  algorithm  works  by  binning  the  images  according  to  the  motion  of  the  marker  in  them.  For  a  given  image,  the  true  position  of  the  marker  lies  along  a  ray  from  the  imager  source  to  the  position  of  the  seed  projection  on  the  detector.  This  true  position  can  be  estimated  using  the  projections  from  other  images  in  the  same  bin.  We  can  build  an  entire  4D  trajectory  of  the  fiducial  marker  by  repeating  this  process  for  each  image  in  the  CBCT  dataset.  We  first  used  computer  simulations  to  show  that  this  algorithm  is  capable  of  reconstructing  realistic  lung  tumour  motion  with  sub-­‐millimeter  accuracy.  We  also  verified  it  is  feasible  to  implement  at  the  treatment  unit,  by  imaging  and  re-­‐constructing  the  motion  of  a  programmable  moving  platform.  Lastly,  we  demonstrated  a  reconstruction  using  this  algorithm  for  a  clinical  case  study.  This  research  has  provided  a  new  way  to  reconstruct  CBCT  data  that  can  provide  additional  information  about  the  daily  changes  in  the  motion  of  the  tumour,  without  increasing  the  im-­‐aging  dose  to  the  patient.  

Page 11: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -10- *    

Presentation 1.6 – 12:20

Kelvin  Chow,  BSc  -­‐  Biomedical  Engineering,  University  of  Alberta  After  graduating  from  the  University  of  Alberta  in  2006  with  a  bachelor’s  degree  with  distinction  in  Engineering  Physics,  Kelvin  is  furthering  his  studies  in  the  PhD  program  in  Biomedical  Engineering  under  the  supervision  of  Dr  Richard  Thomp-­‐son.  Initially  focusing  on  functional  lung  imaging  using  MRI,  his  research  program  has  expanded  to  include  various  aspects  of  cardiopulmonary  MRI,  particularly  myocardial  tissue  characterization  with  quantitative  T1  and  T2  mapping.  Kelvin’s  involvement  includes  programming  and  implementing  novel  MRI  pulse  se-­‐quences,  development  of  post-­‐process  analysis  software,  and  participation  in  numerous  clinical  research  studies,  with  over  200  patient  exams  performed  during  his  program.  He  is  currently  in  the  5th  year  of  his  PhD  program.  

Myocardial  Tissue  T1  Mapping  

K  Chow,  M  Friedrich,  R  Thompson  Myocardial  fibrosis  is  a  condition  where  myocytes,  the  functional  unit  of  the  heart  muscle,  are  replaced  by  collagen.  Its  presence  has  been  associated  with  various  heart  diseases,  such  as  myocardial  infarction  [1],  heart  failure  [2],  and  dilated  cardiomyopathy  [3],  and  it  is  associated  with  a  worsening  in  various  measures  of  overall  heart  function.  Measurement  of  myocardial  T1  values  following  an  intravenous  injection  of  a  gadolinium  based  contrast  agent  can  identify  regions  of  fibro-­‐sis,  as  the  greater  volume  of  contrast  agent  in  fibrotic  tissue  results  in  a  shorter  T1  than  healthy  tissue.  

Late  Gadolinium  Enhancement  (LGE)  imaging  is  a  T1  weighted  sequence  that  is  part  of  the  common  clinical  routine  when  assessing  tissue  viability  with  ischemic  heart  disease,  particularly  following  myocardial  infarction.  At  7  minutes  fol-­‐lowing  the  injection  of  gadolinium,  an  inversion  recovery  turbo  spin  echo  sequence  is  used  with  an  experimentally  deter-­‐mined  inversion  time  selected  to  null  healthy  myocardium.  This  sequence  generates  image  contrast  that  highlights  regions  of  scarred  tissue  as  bright  relative  to  a  dark  myocardium,  and  provides  the  clinician  information  about  whether  a  particular  region  of  tissue  is  scarred  (non-­‐viable)  or  may  still  be  salvageable  through  intervention.  However,  LGE  fails  to  identify  global  diffuse  fibrosis,  where  the  entire  myocardium  may  have  a  shortened  T1.  

Quantitative  T1  mapping  approaches  are  sensitive  not  only  to  global  changes  in  tissue  cellular  structure,  but  the  amount  of  T1  shortening  also  reflects  the  degree  of  fibrosis  present,  as  more  heavily  fibrosed  tissue  retains  a  larger  volume  of  gado-­‐linium  contrast.  The  most  common  imaging  sequence  for  this  technique  is  the  MOdified  Look-­‐Locker  Inversion  recovery  (MOLLI)  sequence,  which  combines  multiple  images  with  varied  inversion  recovery  times  to  determine  T1  values.  Image  acquisitions  before  and  after  contrast  injection  can  be  combined  with  the  relaxivity  equation,  R1post  =  R1pre  +  R*[Gd],  where  R1=1/T1,  to  determine  the  gadolinium  concentration  in  the  tissue.  However,  post-­‐gadolinium  T1  measurements  are  known  to  vary  as  a  function  of  time  after  injection  as  the  contrast  is  cleared  from  the  body.  

Measurements  of  blood  T1  values  pre  and  post-­‐contrast  (in  addition  to  myocardial  T1  values)  can  be  used  derive  the  blood-­‐tissue  partition  coefficient,  lambda:  {lambda=[R1(myocardium,post)  -­‐  R1(myocardium,pre)]/[R1(blood,post)  -­‐  R1(blood,pre)]}.  This  value  is  normalized  to  the  gadolinium  concentration  in  the  blood  and  is  expected  to  be  a  more  time-­‐insensitive  measure  of  fibrosis.  

In  this  work,  the  blood  and  myocardial  T1  values  are  measured  prior  to  gadolinium  contrast  injection  and  at  one  minute  intervals  afterwards  in  a  population  of  healthy  subjects  (n=9).  A  custom  saturation  recovery  single-­‐shot  steady  state  free  precession  sequence  is  used  to  obtain  T1  measurements  at  each  time  point  during  a  single  breath-­‐hold.  Quantitative  T1  imaging  is  likely  to  be  added  to  a  clinical  exam  during  the  10-­‐15  minute  post-­‐contrast  window,  where  myocardial  T1  values  were  found  to  increase  by  6%,  while  lambda  increased  by  only  1%.  [1]  Flacke  SJ  et  al.  Radiol  2001;  218:  703-­‐710.  [2]  Iles  L  et  al.  J  Am  Coll  Cardiol  2008;  52:  1574-­‐80.  [3]  Jerosch-­‐Herold  M  et  al.  Am  J  Physiol  Heart  Circ  Physiol  2008;  295:  H1234-­‐H1242.  

Page 12: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -11- *    

Presentation 1.7 – 12:35

Karla  Ponjavic,  MSc  –  Neuroscience,  University  of  Lethbridge  Karla’s  interest  primarily  lies  in  cognitive  disorders  and  mental  health.  While  pursuing  an  undergraduate  degree  in  Neuroscience  at  the  University  of  Leth-­‐bridge  she  worked  as  a  behavioural  therapist  with  children  and  young  adults  with  autism  and  associative  disorders.  After  completion  of  her  degree,  she  worked  as  a  research  assistant  at  the  Canadian  Centre  for  Behavioural  Neuroscience  (CCBN)  before  beginning  graduate  school  at  the  University  of  Lethbridge  in  September  2010.  In  her  graduate  work,  Karla  studies  the  electrophysiological  correlates  of  auditory  distraction  in  post-­‐secondary  adults  with  and  without  Attention  Deficit  Hyperactivity  Disorder  (ADHD)  using  dense-­‐array  electroencephalography  (EEG).  Karla  hopes  to  continue  her  educational  endeavors  by  pursuing  a  PhD  in  Clinical  Neuropsychology.  

Electrophysiological  Correlates  of  Auditory  Distraction  as  Manifested  in  Post-­‐Secondary  Adults  with  and  without  Attention  Deficit  Hyperactivity  Disorder  

KD  Ponjavic,  JR  Dowdall,  MS  Tata  The  auditory  Event-­‐Related  Potential  (ERP)  has  been  used  to  investigate  focused  attention.  In  classic  cue-­‐target  paradigms  the  N1  amplitude  of  the  ERP  waveform  is  greater  when  the  target  is  validly  cued  and  smaller  when  invalidly  cued.  This  suggests  that  early  auditory  mechanisms  handle  task-­‐relevant  and  task-­‐irrelevant  input  dif-­‐ferently.  We  tested  the  hypothesis  that  N1  amplitude  evoked  by  task-­‐relevant  (i.e.  attended)  stimuli  would  be  modulated  by  different  levels  of  distraction,  despite  a  constant  endogenous  attentional  instruction  to  maintain  focus  on  the  target.  We  further  hypothesized  that  susceptibility  to  distraction  would  be  severe  in  subjects  with  Attention  Deficit  Hyperactivity  Disorder  (ADHD).    Healthy  controls  and  adults  with  a  prior  diagnosis  of  ADHD  were  recruited  for  this  study.  The  ADHD  group  was  split  into  individuals  taking  stimulant  medication  (e.g.  Rita-­‐lin)  and  those  who  were  un-­‐medicated.  Participants  focused  their  attention  on  a  stream  of  long  and  short  noise  bursts  presented  to  one  ear  while  simultaneously  ignoring  a  pre-­‐recorded  story  (high  distraction)  or  amplitude  matched  broadband  noise  (low  distraction)  presented  to  the  other  ear.  Behavioral  data  showed  significantly  higher  sensitivity  to  detect  targets  (d’)  under  low  distraction  relative  to  high  distraction  conditions  across  all  groups.  N1  amplitude  was  greater  when  evoked  by  targets  in  the  low  distraction  relative  to  high  distraction  conditions  across  all  groups.  These  results  suggest  that  modulations  of  N1  amplitude  indicate  the  degree  of  dis-­‐traction  in  healthy  controls  and  in  individuals  with  ADHD.  Since  the  magnitude  of  a  peak  in  the  ERP  waveform  can  be  modulated  by  differences  in  inter-­‐trial  amplitude  (i.e.  sensory  gain)  or  inter-­‐trial  phase  coherence  (i.e.  jitter  in  the  time-­‐locking  of  brain  responses  to  the  events  that  trigger  them),  we  further  characterized  the  effect  of  distraction  on  inter-­‐trial  amplitude  and  phase  coherence.  We  also  sought  to  visualize  intracranial  generators  of  brain  electrical  activity  under  varying  conditions  of  auditory  distraction.          

Page 13: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -12- *    

Presentation 2.1 – 13:45

Rebecca  Feldman,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta  In  2003  Rebecca  Feldman  graduated  from  the  University  of  Toronto  with  a  de-­‐gree  in  Engineering  Science  (Electrical  Option)  as  well  as  avocado,  yellow,  light  blue,  orange,  and  gold  hard  hats.  In  2005  she  obtained  a  MSc  degree  from  Medi-­‐cal  Biophysics  at  the  University  of  Western  Ontario.  One  can  only  assume  that  this  was  unintentional  as  she  turned  around  and  reenrolled  in  the  same  depart-­‐ment  with  the  same  supervisor  in  an  attempt  to  remedy  the  mistake.  Four  years  later,  she  graduated  from  the  University  of  Western  Ontario  again,  this  time  with  a  PhD  from  Medical  Biophysics,  and  then  fled  the  province.  Despite  only  medio-­‐cre  skill  in  the  sports  of  ice  skating,  yukigassen,  and  skiing,  Rebecca  is  currently  a  Post  Doctoral  fellow  in  the  Department  of  Biomedical  Engineering  at  the  University  of  Alberta.  Her  most  recent  work  involves  23NA  magnetic  resonance  imaging  development  with  a  focus  applications  involving  cartilage  as-­‐sessment  in  the  knee.  Her  most  recent  procrastination  techniques  involve  writing  about  herself  in  the  third  per-­‐son,  executing  back-­‐handsprings,  and  experimenting  with  profile  pictures.  Rebecca  typically  utilizes  the  Oxford  comma  when  writing,  C++  when  coding,  and  the  word  ‘utilizes’  whenever  I  could  use  ‘uses’.  

Fluid  Suppressed  Sodium  Magnetic  Resonance  Imaging  of  the  Human  Knee  

R  Feldman,  C  Beaulieu  Osteoarthritis  is  a  degenerative  disease  affecting  more  than  3  million  Canadians;  it  is  the  second  leading  cause  of  chronic  disability  in  Canada.  More  than  40%  of  people  over  70  years  of  age  suffer  from  osteoarthritis  and  degeneration  due  to  this  disease  is  the  most  common  reason  for  total  hip  and  knee  replacements.  The  progression  of  osteoarthritis  is  typically  asso-­‐ciated  with  the  loss  of  articular  cartilage,  but  early  indicators  also  involve  changes  in  the  cartilage  matrix.  Standard  imaging  modalities,  including  proton  magnetic  resonance  imaging  (1H-­‐MRI),  have  been  unable  to  effectively  visualize  the  initial  progression;  however,  sodium  concentration  has  been  show  to  correlate  well  with  cartilage  health.  So,  sodium  magnetic  resonance  imaging  (23Na-­‐MRI)  could  be  useful  as  a  non-­‐invasive  way  to  evaluate  of  articular  cartilage.  If  sodium  content  proves  to  be  a  good  metric  of  cartilage  health,  23Na-­‐MRI  could  be  used  track  both  the  progression  of  the  disease  and  the  efficacy  of  potential  drug  or  preventative  therapies.    

Sodium  imaging  can  be  a  technical  challenge,  at  least  when  compared  to  more  common  1H-­‐MRI.  In  part  because  of  the  lower  gyromagetic  ratio  of  sodium,  signal  from  a  nucleus  is  less  than  35%  of  the  signal  from  a  hydrogen  nucleus.  Addition-­‐ally,  although  sodium  is  prevalent  in  the  body,  the  biological  abundance  of  sodium  is  still  over  1000  times  less  than  that  of  hydrogen.  To  make  matters  even  more  interesting,  sodium  relaxes  very  quickly  after  excitation,  making  rapid  acquisition  of  data  essential.  Finally,  the  knee  physiology  itself  presents  some  challenges,  as  the  knee  cartilage  is  in  close  proximity  to  fluid.  This  fluid  produces  a  very  bright  sodium  signal  that  makes  the  quantification  of  cartilage  in  sodium  images  difficult.    

Since  the  relaxation  rates,  specifically  the  longitudinal  relaxation  component  T1,  of  tissue  and  fluid  are  significantly  dif-­‐ferent,  it  should  be  possible  to  suppress  the  fluid  signal  using  an  inversion-­‐recovery  pulse  sequence.  In  order  implement  that  sequence  effectively,  we  need  to  be  fairly  certain  of  the  various  tissue  relaxation  rates  in  the  knee.  This  presentation  will  discuss  the  results  of  our  characterization  of  the  T1  in  knee  tissues  and  how  we  used  those  values  to  implement  a  fluid  suppression  sequence.    

As  long  as  we  are  looking  at  fluid  suppression  using  inversion  recovery,  it  becomes  possible  to  turn  some  of  the  difficul-­‐ties  in  sodium  imaging  to  an  advantage.  The  rapid  relaxation  rate  of  sodium  means  that  the  application  of  a  ‘soft’  inversion  pulse  can  be  used  to  incompletely  invert  cartilage  with  respect  to  fluid.  This  technique  results  in  a  stronger  cartilage  signal,  as  well  as  permits  more  rapid  repetition  times,  all  of  which  leads  to  better  image  quality  (a  better  image  signal  to  noise  ra-­‐tio).  

Using  a  soft  inversion  recovery  fluid  suppression  pulse  sequence,  and  the  experimentally  determined  T1  relaxation  times  were  used  to  optimize  the  cartilage  signal  to  noise  ratio.  

Page 14: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -13- *    

Presentation 2.2 – 14:00

Shantanu  Banik,  MSc  -­‐  Electrical  and  Computer  Engineering,  University  of  Calgary  Shantanu  Banik  is  currently  a  PhD  candidate  at  the  University  of  Calgary,  Calgary,  Alberta,  Canada.  He  received  his  MSc  degree  in  2008  in  Electrical  and  Computer  Engineering  from  the  University  of  Calgary,  Calgary,  Alberta,  Canada  and  his  BSc  degree  in  2005  in  Electrical  and  Electronic  Engineering  from  the  Bangladesh  Uni-­‐versity  of  Engineering  and  Technology  (BUET),  Dhaka,  Bangladesh.  He  is  working  on  the  problem  of  detection  of  architectural  distortion  in  prior  mammograms  to  aid  the  process  of  early  detection  of  breast  cancer.  His  research  interests  include  medical  signal  and  image  processing  and  analysis,  machine  learning,  developing  computer-­‐aided  diagnosis  (CAD)  techniques  for  the  detection  of  breast  cancer,  landmarking  and  segmentation  of  pediatric  computed  tomographic  (CT)  images,  and  automatic  segmentation  of  the  primary  tumor  mass  in  children  with  neuroblastoma.  He  has  coauthored  several  journal  papers,  conference  papers,  a  few  book  chapters,  and  a  book  (monograph)  on  Landmarking  and  Segmentation  of  3D  CT  Images.    

Detection  of  Architectural  Distortion  in  Prior  Mammograms  of  Interval-­‐cancer  Cases  

S  Banik  Architectural  distortion  is  an  important  early  sign  of  breast  cancer,  but  because  of  its  subtlety,  it  is  a  common  cause  of  false-­‐negative  findings  on  screening  mammograms.  We  hypothesize  that  screening  mammograms  ob-­‐tained  prior  to  the  detection  of  cancer  could  contain  subtle  signs  of  early  stages  of  breast  cancer,  in  particular,  architectural  distortion.  The  methods  are  based  upon  Gabor  filters,  phase  portrait  analysis,  a  novel  method  for  the  analysis  of  the  angular  spread  of  power,  fractal  analysis,  Laws’  texture  energy  measures  derived  from  geo-­‐metrically  transformed  regions  of  interest  (ROIs),  and  Haralick’s  texture  features.  With  Gabor  filters  and  phase  portrait  analysis,  4,224  ROIs  were  automatically  obtained  from  106  prior  mammograms  of  56  interval-­‐cancer  cases,  including  301  true-­‐positive  ROIs  related  to  architectural  distortion,  and  from  52  mammograms  of  13  normal  cases.  For  each  ROI,  the  fractal  dimension,  the  entropy  of  the  angular  spread  of  power,  10  Laws’  meas-­‐ures,  and  Haralick’s  14  features  were  computed.  The  areas  under  the  receiver  operating  characteristic  (ROC)  curves  obtained  using  the  features  selected  by  stepwise  logistic  regression  and  the  leave-­‐one-­‐image-­‐out  method  are  0.77  with  the  Bayesian  classifier,  0.76  with  Fisher  linear  discriminant  analysis,  and  0.79  with  a  single-­‐layer  feed-­‐forward  neural  network.  Free-­‐response  receiver  operating  characteristics  indicated  sensitivities  of  0.80  and  0.90  at  5.8  and  8.1  false  positives  per  image,  respectively,  with  the  Bayesian  classifier  and  the  leave-­‐one-­‐image-­‐out  method.  The  study  demonstrated  the  ability  to  detect  early  signs  of  breast  cancer  15  months  ahead  of  the  time  of  clinical  diagnosis,  on  the  average,  for  interval-­‐cancer  cases,  with  a  sensitivity  of  0.8  at  5.8  FP/image.  The  proposed  computer-­‐aided  detection  (CAD)  techniques,  dedicated  to  accurate  detection  and  localization  of  architectural  distortion,  could  lead  to  efficient  detection  of  early  and  subtle  signs  of  breast  cancer  at  pre-­‐mass-­‐formation  stages.    

Page 15: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -14- *    

Presentation 2.3 – 14:15

Stefanie  Hassel,  PhD  –  Psychiatry,  University  of  Calgary  My  research  interests  focus  on  the  combination  of  neuroimaging  methodologies  and  their  application  to  investigate  and  characterize  the  neurophysiological  cor-­‐relates  of  emotion  perception,  emotion  regulation  and  social  cognition  in  mood  disorders,  specifically  bipolar  disorder  and  unipolar  depression.  We  are  employ-­‐ing  functional  magnetic  resonance  imaging  (fMRI)  and  diffusion  tensor  imaging  (DTI)  to  investigate  the  interactions  between  prefrontal  cortical  and  subcorti-­‐cal/temporal  regions  which  have  been  shown  to  underlie  mood-­‐regulation,  to  gain  a  better  understanding  of  potentially  aberrant  neural  processes  that  underlie  emotion  processing  and  emotion  regulation  in  mood  disorders,  because  each  modality  reveals  unique  aspects  of  brain  activity.  In  order  to  fully  understand  bipolar  disorder,  marked  by  extreme  mood  swings  between  mania  and  depression,  patients  have  to  be  examined  across  the  different  phases  of  their  illness.  In  addition  to  cross-­‐sectional  studies  we  are  therefore  also  interested  in  following  patients  in  longitudinal  studies.  

Differential  Activation  during  an  Affective  Go-­‐NoGo  Task  in  Bipolar  Disorder.  

S  Hassel  Increased  accuracy  in  diagnosing  bipolar  disorder  (BD)  is  a  long-­‐term  goal.  Identifying  biomarkers,  which  re-­‐flect  underlying  pathophysiologic  neural  mechanisms  in  BD,  may  facilitate  achieving  this  goal.  A  first  aim  there-­‐fore  is  to  find  disease  specific  markers  by  examining  functional  neural  abnormalities  in  BD  during  neuropsy-­‐chological  tasks  related  to  its  core  clinical  features,  e.g.  impaired  emotion  regulation  and  social  cognition.  Using  functional  magnetic  resonance  imaging  (fMRI),  we  measured  neural  activity  in  response  to  an  Affective  

Go-­‐NoGo  Task,  consisting  of  emotional  stimuli  (fear,  happy,  anger  faces)  and  non-­‐emotional  control  stimuli  (neutral  female  and  male  faces)  in  euthymic  BD  and  healthy  individuals  (HI).  FMRI  data  were  preprocessed  and  analysed  using  Statistical  Parametric  Mapping  (SPM8)  software.  In  whole-­‐brain  analyses  (p(uncorrected)=0.001)  we  compared  patterns  of  neural  activity  in  BD  and  HI.  Preliminary  results  comparing  emotional  Go  versus  emotional  NoGo  trials  yielded  differential  patterns  of  ac-­‐

tivation  in  BD  and  HC  within  the  right  ventro-­‐medial  prefrontal  areas  (BA11/10),  the  left  insula  and  cingulate  gyrus  (BA24).  HI  showed  increases  in  activation  in  the  right  cingulate  gyrus.  Comparing  all  Go  (emotional  and  control)  versus  all  NoGo  trials  revealed  increased  activation  within  the  right  cingulate  gyrus  (BA24)  and  dorso-­‐lateral  PFC  (BA9)  in  BD  to  Go  trials,  but  to  NoGo  trials  in  HI.    Preliminary  findings  point  to  cognition-­‐emotion  interference  in  BD  and  observed  neural  differences  indicate  

a  possibly  altered  emotion  modulation  of  cognitive  processing  in  BD.  Increased  activation  in  brain  regions  pre-­‐viously  shown  in  emotion  regulation  and  response  inhibition  tasks  could  represent  a  disease-­‐specific  marker  for  BD.  

Page 16: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -15- *    

Presentation 2.4 – 14:30

Robert  Stobbe,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta  Rob  has  a  degree  in  Electrical  Engineering  from  the  University  of  Victoria  and  a  joint  PhD  in  Electrical  and  Biomedical  Engineering  from  the  University  of  Alberta.  He  has  industrial  experience  with  both  Nortel,  as  a  co-­‐op  student  (including  4  months  in  Calgary),  and  Vecima  Networks  in  Victoria,  as  a  co-­‐op  student  and  then  as  a  full-­‐time  microwave  communication  circuit  design  research  engineer.  Rob  is  currently  employed  as  a  post-­‐doctoral  fellow  at  the  University  of  Alberta  with  Dr  Christian  Beaulieu,  and  his  research  interests  include  the  design  and  development  of  new  non-­‐Cartesian  k-­‐space  acquisition  methodologies.  This  summer  Rob  is  looking  forward  to:  coaching  his  oldest  son  in  U6  soccer,  chasing  his  second  oldest  son  as  he  escapes  on  his  tricycle,  and  especially  the  arrival  of  number  three.      

Exploring  New  Ways  to  Get  A-­‐round  in  3D  k-­‐Space  

R  Stobbe,  C  Beaulieu  There  are  many  ways  in  which  one  could  sample  k-­‐space  to  create  an  MR  image,  and  in  this  presentation  further  emergence  from  simple  back-­‐and-­‐forth  Cartesian  methodology  (i.e.  k-­‐space  acquisition  as  one  may  mow  their  lawn)  will  be  explored.  In  particular  this  presentation  will  describe  a  logical  development  of  3D  projection  imag-­‐ing  (3DPI  –  a  class  of  acquisition  methodologies  in  which  sampling  projects  from  the  centre  of  k-­‐space)  leading  to  two  very  new,  and  as  yet  unpublished,  3DPI  k-­‐space  acquisition  proposals.  3DPI  has  proven  to  be  highly  bene-­‐ficial  for  23Na  MRI  (the  development  playground  of  my  PhD),  but  I  will  suggest  that  3DPI  may  have  value,  be-­‐yond  its  facilitation  of  ultra-­‐short  TE,  in  the  context  of  some  (potentially  unexpected)  1H  imaging  scenarios  as  well.  The  two  new  3DPI  techniques  to  be  presented  are  ones  in  which  sampling  trajectories  wind  through  3D  k-­‐

space  such  that  each  trajectory  samples  a  large  portion  of  k-­‐space.  The  development  of  these  techniques  was  sparked  by  the  hope  that  the  winding  of  trajectories  through  3D  k-­‐space  would  lead  to  sampling  less  inhibited  by  the  maximum  rate  of  change  permissible  for  gradient  fields,  a  maximum  constrained  by  peripheral  nervous  system  stimulation.  In  essence,  the  hope  was  that  more  of  3D  k-­‐space  could  be  sampled  with  each  trajectory  than  is  possible  with  back-­‐and-­‐forth  Cartesian  methodology  in  the  same  time  allotted  for  k-­‐space  acquisition,  and  thus  reduce  the  time  required  for  MR  image  formation  in  certain  circumstances.  Whether  or  not  I  have  ‘hoped  well’  remains  to  be  fully  determined.  This  presentation  will  be  predominantly  theoretical,  building  from  the  introduction  of  3DPI  and  prior  devel-­‐

opment  (which  has  benefited  23Na  MRI)  to  the  development  of  my  two  new  techniques.  The  first  technique  was  created  to  fully  sample  k-­‐space  to  a  spherical  extent  in  a  single  shot  as  one  may  wind  a  ball  of  yarn,  and  was  christened  Yarn-­‐Ball.  The  second  technique  was  created  for  multi-­‐shot  3D  k-­‐space  acquisition  and  has  been  christened  Wind-­‐Spinner.  An  evaluation  of  these  techniques,  using  custom-­‐built  GPU-­‐based  direct  Fourier  trans-­‐form  software  which  samples  the  k-­‐space  values  of  known  3D  image  objects  at  the  non-­‐Cartesian  k-­‐space  loca-­‐tions  specified  by  each  trajectory  and  facilitates  comparison  of  reconstructed  images  with  the  original  image,  will  be  described.  This  evaluation  allows  initial  analysis  of  the  sampling  techniques  themselves  without  the  added  influences  of  off-­‐resonant  and  eddy-­‐current  (etc.)  effects.  Preliminary  images  acquired  at  4.7T  will  also  be  shown.  Yarn-­‐Ball  will  be  theoretically  compared  with  echo-­‐volume  imaging  (EVI),  which  has  recently  been  con-­‐sidered  for  ‘ultra-­‐rapid’  fMRI.  Wind-­‐spinner  will  be  theoretically  considered  for  utility  in  the  context  of  rapidly-­‐acquired  magnetization  prepared  gradient  echo  (MP-­‐RAGE),  dynamic  contrast  enhanced  imaging  (DCE-­‐MRI),  as  well  as  the  contexts  of  diffusion  tensor  imaging  (DTI)  and  fMRI.  

Page 17: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -16- *    

Presentation 2.5 – 14:45

Amber  Doiron,  PhD  -­‐  Chemical  Engineering  and  Radiology,  University  of  Calgary  Dr  Doiron  has  been  a  postdoctoral  fellow  in  the  departments  of  chemical  engi-­‐neering  and  radiology  at  the  University  of  Calgary  since  2009.  She  conducts  re-­‐search  in  the  areas  of  molecular  imaging,  nanotechnology,  and  fluid  dynamics.  Her  current  research  is  directed  towards  the  development  of  a  molecular  imaging  agent  for  detection  of  atherosclerosis  as  well  as  investigating  the  interactions  of  endothelial  cells  with  nanoparticles.  She  received  her  BS  degree  in  chemistry  at  Colorado  State  University  (2003),  and  received  a  MS  (2007)  and  PhD  (2008)  from  the  University  of  Texas  at  Austin  in  biomedical  engineering.  Her  honors  include  the  T  Chen  Fong  Postdoctoral  Fellowship  in  Medical  Imaging,  the  National  Science  Foundation  Integrative  Graduate  Education  and  Research  Traineeship  (2004-­‐2006),  the  Thrust  2000  fellowship  (2004-­‐2008),  and  the  Lucent  Technologies  Academic  Award  (1999-­‐2003).    

The  Design  of  a  MR  Molecular  Imaging  Agent  for  Detection  of  Atherosclerotic  Plaques  

AL  Doiron  Despite  recent  advances  in  medicine  and  imaging,  complications  arising  from  atherosclerosis  remain  the  leading  causes  of  morbidity  and  mortality  in  the  developed  Western  world.  Medical  imaging  of  atherosclerotic  plaque  is  vital  in  assessing  the  likelihood  of  the  plaque  to  cause  a  stroke  or  heart  attack  and  determining  how  detrimental  that  event  may  be.  Magnetic  resonance  (MR)  imaging  is  an  exciting  technology  for  plaque  imaging  due  to  its  abil-­‐ity  to  characterize  plaque  components,  lack  of  ionizing  radiation,  and  repeatability  over  time.    Current  clinical  techniques  for  atherosclerosis  imaging  focus  largely  on  the  luminal  space  of  the  vessel;  how-­‐

ever,  the  vulnerability  of  the  plaque  to  rupture  is  better  characterized  by  its  biochemical,  biomechanical,  and  cellular  composition.  We  have  used  nanotechnology  to  create  a  molecularly-­‐specific  MR  contrast  agent  to  target  atherosclerotic  plaques  based  on  cellular  composition  in  order  to  augment  medical  imaging  and  identification  of  plaques  at  risk  for  rupture.    The  molecular  imaging  agent  consists  of  a  gadolinium-­‐linked  polymeric  nanoparticle  that  incorporates  tar-­‐

geting  to  activated  macrophages  via  a  folic  acid  moiety.  Activated  macrophages  over  express  folate  receptors  and  are  integral  to  inflammatory  diseases  such  as  atherosclerosis.  To  initially  study  this  agent  in  vitro,  a  fluoro-­‐phore  was  also  attached  to  the  particle  to  enable  visualization  with  fluorescent  microscopy.  Successful  particle  creation  was  confirmed  chemically  with  FTIR  and  NMR,  as  well  as  morphologically  with  transmission  electron  microscopy.  The  agent  has  been  further  characterized  in  terms  of  cytotoxicity  to  human  endothelial  cells,  zeta  potential,  gadolinium  content  and  release  over  time,  and  relaxivity  (MR  contrast  enhancement).  The  efficiency  of  targeting  of  the  conjugate  in  vitro  was  studied  using  a  human  cell  line  expressing  the  folate  receptor  compared  to  a  cell  line  without  folate  receptor.    The  agent  is  currently  being  studied  in  an  in  vitro  flow  chamber  model  as  well  as  a  mouse  model  of  athero-­‐

sclerosis.  In  order  to  study  cellular  attachment  and  distribution  of  the  particles  in  the  flow  chamber,  particles  are  introduced  into  circulating  media  that  flows  over  a  monolayer  of  cells,  mimicking  the  physiological  vascular  environment.  As  demonstrated  previously  by  our  laboratory  with  commercially  available  contrast  agents,  this  flow  chamber  model  can  be  used  to  determine  the  localization  and  retention  of  contrast  agent  as  imaged  with  MR,  and  the  cells  can  also  be  imaged  using  microscopy  to  localize  particles  on  a  cellular  level.    

Page 18: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -17- *    

Presentation 2.6 – 15:00

Francois  Moreau,  MD  -­‐  Clinical  Neurosciences,  University  of  Calgary  Francois  Moreau  is  a  neurology  professor  at  Université  de  Sherbrooke,  Quebec  doing  a  2-­‐year  felllowship  in  Stroke  in  Calgary.  His  main  research  focus  is  in  transient  ischemic  attack  (TIA)  but  he  also  entertains  interests  in  Near-­‐Infrared  Spectroscopy  and  vascular  ultrasound  

Absolute  Oxygenation  Measurements  in  Stroke  using  Near-­‐infrared  Spectroscopy:  Preliminary  Findings  

F  Moreau,  A  Demchuk,  JF  Dunn  Background:  Brain  oxygen  levels  are  an  important  unmeasured  parameter  in  stroke.  Frequency  domain  Near-­‐Infrared  Spectroscopy  (NIRS)  is  a  relatively  new  spectroscopy  technique  with  the  potential  to  measure  absolute  oxygenated  hemoglobin  levels  in  the  microvasculature  of  brain.  Absolute  levels  are  required  in  order  to  com-­‐pare  oxygenation  between  patients  and  healthy  subjects,  for  both  diagnosis  and  monitoring  purposes.    Methods:  Oxiplex  TS  (ISS)  was  used  to  quantify  oxygenated  hemoglobin,  deoxygenated  hemoglobin  and  related  calculated  parameters  on  various  sites  over  the  scalp  in  5  healthy  volunteers,  5  cadavers,  3  large  middle  cere-­‐bral  artery  (MCA)  subacute  stroke  patients  and  one  large  MCA  subacute  stroke  patient  with  hemicraniectomy.    Results:  There  were  no  side  to  side  difference  and  normal  values  for  all  parameter  in  both  healthy  volunteers  and  large  MCA  stroke  patients.  Cadavers  had  near  0  levels  of  oxygenated  hemoglobin,  which  is  significantly  dif-­‐erent.  In  the  hemicraniectomy  patient,  Total  hemoglobin  and  oxygen  saturation  levels  were  much  higher  on  the  side  of  the  stroke  without  bone  covering.  This  patient  had  hemorrhagic  transformation  within  the  infarcted  area.    Conclusion:  These  preliminary  results  show  that  it  is  possible  to  measure  oxygen  levels  in  healthy  volunteers  and  patients.  More  patient  data  is  required  before  making  conclusions  about  the  oxygen  levels  to  expect  at  the  various  stages  of  stroke.  

Page 19: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -18- *    

Presentation 2.7 – 15:15

Mirza  Faisal  Beg,  PhD  -­‐  School  of  Engineering  Science,  Simon  Fraser  University  Faisal  Beg  got  his  PhD  from  the  Johns  Hopkins  School  of  Medicine  in  2003.  He  is  currently  an  Associate  Professor  at  the  Simon  Fraser  University,  School  of  Engi-­‐neering  Science.  His  interests  are  in  computational  anatomy,  registration,  segmen-­‐tation  and  multimodal  image  analysis.        

Computational  Anatomy  –  Tools  for  Mapping  Brain  Structure  and  Applications  to  Differential  Discrimination  in  Dementia  

MF  Beg  Quantification  of  neuroanatomical  structure  is  an  extremely  challenging  problem  in  the  general  setting.  The  human  brain  consists  of  functionally  specific  neuroanatomical  regions  at  the  level  of  cortical  and  subcortical  re-­‐gions  and  the  white  matter  pathways.  However,  there  is  considerable  variation  observed  in  MRI-­‐visible  neuro-­‐anatomy  across  individuals.  Thus,  the  computerized  identification  of  neuroanatomical  changes  from  MR  images  that  occur  due  to  disease  and  distinguishing  those  from  those  that  occur  due  to  normal  variation  in  the  popula-­‐tion  is  a  difficult  problem  that  is  the  goal  of  Computational  Anatomy  (CA).  I  will  discuss  a  few  tools  from  the  Computational  Anatomy  toolbox  for  tasks  such  as  measuring  cortical  thick-­‐

ness,  and  performing  whole  brain  registration  and  segmentation.  I  will  then  show  a  few  results  of  applying  these  tools  towards  the  problem  of  discrimination  between  structural  changes  in  the  brain  in  dementias  such  as  Alz-­‐heimer’s  and  frontotemporal  dementias.    

Page 20: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -19- *    

Presentation 3.1 – 16:15

Yue  Wang,  MD  -­‐  Faculty  of  Rehabilitation  Medicine,  University  of  Al-­‐berta  I  am  an  orthopedic  surgeon  from  China.  Finished  resident  training  in  2001,  I  prac-­‐ticed  orthopedic  surgery  in  Hangzhou  (a  city  in  eastern  China)  for  over  6  years.  I  won  the  China-­‐Canada  Norman  Bethune  Health  research  scholarship  (a  collabo-­‐rating  program  supported  by  the  China  Scholarship  Council  and  CIHR)  and  come  to  Canada  studied  as  a  PhD  student  since  2008.  Under  the  supervision  of  Profes-­‐sor  Michele  Crites  Battié  at  the  University  of  Alberta,  currently  I  am  in  the  forth  year  of  my  PhD  program.  With  great  enthusiasm  in  spine  surgery  and  spine  re-­‐search,  my  main  research  interests  are:  1)  the  vertebral  endplate:  morphomet-­‐rics,  lesions,  and  the  role  it  may  play  in  back  pain  and  disc  degeneration;  2)  Modic  changes:  etiology,  epidemiological  characteristics,  and  associations  with  disc  degeneration  and  back  pain.    

Quantitative  Measures  of  Modic  Changes  on  Lumbar  Spine  MRI:  Intra-­‐  and  Inter-­‐rater  Reliability  

Y  Wang  Objective:  To  develop  quantitative  measures  for  Modic  changes  (MCs)  on  magnetic  resonance  (MR)  images  and  evaluate  measurement  reliability.  Summary  of  Background  Data:  MCs  have  been  studied  for  over  20  years  but  the  clinical  significance  remains  controversial.  Little  effort  has  been  made  to  improve  the  measurement  of  MCs.  Materials  and  Methods:  The  study  was  approved  by  the  responsible  institutional  review  board.  Based  on  Modic  classification,  a  series  of  quantitative  dimension  and  signal  intensity  measures  were  developed  for  assessing  MCs.  Mid-­‐sagittal  T1  and  T2-­‐weighted  MR  images  from  83  lumbar  spines  were  then  qualitatively  and  quantita-­‐tively  assessed  by  two  observers  independently.  Kappa  and  intra-­‐class  correlation  coefficient  (ICC)  were  used  to  examine  intra-­‐  and  inter-­‐rater  reliability.  Pearson  correlation  coefficient  was  used  to  assess  the  relationships  between  the  quantitative  measurements  of  MCs.  Mean  absolute  deviation  (MAD)  and  Bland-­‐Altman  Plots  also  were  used  to  evaluate  measurement  errors  and  limits  of  agreement  for  selected  measures.    Results:  For  Modic  classification,  intra-­‐rater  agreement  was  excellent  (κ=0.88)  and  inter-­‐rater  agreement  was  substantial  (κ=0.79).  Intra-­‐rater  agreement  also  was  excellent  when  obtaining  dimension  measurements  (ICC=0.82  to  0.96)  from  T1  or  T2-­‐weighted  images  and  inter-­‐rater  agreement  was  slightly  greater  using  T1-­‐weighted  images  (ICC=0.73  to  0.88)  than  T2-­‐weighted  images  (ICC=0.66  to  0.82).  Signal  intensity  measurements  on  T2-­‐weighted  images  were  found  to  have  almost  perfect  intra-­‐  and  inter-­‐rater  reliability  (ICC=0.92  to  0.99).  The  correlation  analysis  demonstrated  that  the  quantitative  measures  represent  different  constructs.  The  MAD  and  Bland-­‐Altman  Plots  further  confirmed  the  high  reliability  of  the  area  ratio,  MCs  mean  signal  intensity  and  MCs  total  signal  intensity  measurements.    Conclusions:  Three  quantitative  measures  are  suggested  to  assess  the  severity  of  MCs,  which  provide  reliable,  precise  measurements  for  research  on  the  etiology,  pathogenesis  and  clinical  relevance  of  MCs.  

Page 21: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -20- *    

Presentation 3.2 – 16:30

Jodi  Harker,  MBBS  -­‐  Stephenson  CMR  Centre,  Libin  Cardiovascular  Institute  I  am  a  cardiologist  from  Brisbane,  Australia.  I  have  previously  undertaken  a  fellowship  in  multi-­‐modality  cardiac  imaging  at  the  Prince  Charles  Hospital  in  Brisbane.  I  am  currently  a  Post-­‐Doctoral  Research  Fellow  at  the  Ste-­‐phenson  CMR  Centre.  My  current  research  interest  is  BOLD  CMR  in  ischaemic  heart  disease.  

Assessment  of  Significant  Coronary  Artery  Stenosis  using  Blood  Oxygen  Level  Dependent  Cardiovascular  Magnetic  Resonance  (BOLD-­‐CMR).      

J  Harker,  J  Luu,  DP  Guensch,  J  Hare,  MG  Friedrich  Background:    Changes  in  myocardial  tissue  oxygenation  can  be  detected  with  blood  oxygen  level–dependent  (BOLD)  cardiovascular  MRI  (CMR)  using  the  magnetic  properties  of  haemoglobin.  The  objective  of  this  study  was  to  validate  whether  BOLD-­‐sensitive  CMR  images  can  detect  an  abnormal  myocardial  tissue  response  to  adenosine  infusion  in  patients  with  CAD,  when  compared  to  fractional  flow  reserve  (FFR).    Methods:  Patients  undergoing  clinically  indicated  coronary  angiography  underwent  BOLD  CMR  scans  using  a  clinical  1.5T  scanner.  Three  short  axis  BOLD  cine  images  were  captured  during  baseline  and  during  adenosine-­‐induced  coronary  hyperaemia.  The  mean  segmental  percent  signal  intensity  (SI)  changes  were  calculated  be-­‐tween  baseline  and  hyperaemia  in  the  subendocardial  myocardium  at  basal,  mid,  and  apical  regions  using  the  16-­‐segment  model.  Segments  were  defined  as  ischaemic  (using  a  cut-­‐off  of  <0.80)  or  non-­‐ischaemic  by  FFR.    Results:  30  patients  were  enrolled  in  the  study,  5  patients  were  excluded  (3  as  they  were  unable  to  tolerate  CMR,  1  patient  due  to  being  unable  to  breath  hold  during  adenosine  and  1  patient  due  to  significant  artifact  from  an  abdominal  surgical  clip)  leaving  25  patients  (average  age  61  ±  10  years)  for  analysis.  There  were  800  myo-­‐cardial  segments  (baseline  and  with  adenosine)  available  for  analysis,  278  of  these  segments  were  subtended  by  a  coronary  artery  with  an  available  FFR  value.  Seventy-­‐seven  segments  (28%)  were  excluded  due  to  pre-­‐defined  criteria  for  poor  image  quality,  53  (69%)  of  these  segments  were  during  adenosine  and  48  (62%)  were  apical  segments.  From  the  remaining  seventy-­‐five  paired  segments  (75  segments  at  baseline  and  75  segments  during  adenosine),  38  had  FFR  values  <0.80,  37  had  FFRs  of  ≥  0.80.  Mean  SI  change  was  significantly  less  in  segments  with  abnormal  FFR  values  (0.23%  ±  9.40%),  in  comparison  to  patients  with  normal  FFR  values  (8.58%  ±  9.58%;  p=0.0002).    Conclusion:  A  blunted  hyperemic  response  to  adenosine  detected  with  BOLD-­‐sensitive  CMR  using  a  1.5T  scan-­‐ner  can  identify  functionally  significant  coronary  artery  stenosis.  However,  image  quality  remains  a  limitation  of  the  approach.  Most  excluded  segments  were  from  early  studies,  suggesting  improved  acquisition  quality  with  experience.  

Page 22: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -21- *    

Presentation 3.3 – 16:45

Dongming  Zhou,  PhD  -­‐  Biomedical  Engineering,  University  of  Alberta  Dr  Dongming  Zhou  is  currently  a  Post  Doctoral  Fellow  in  the  Department  of  Bio-­‐medical  Engineering,  University  of  Alberta,  Canada.  His  research  focuses  on  corti-­‐cal  thickness  analysis  of  MRI  images  in  developmental  and  clinical  profile.  After  received  his  double  Bachelor  Degrees  of  Electrical  Engineering  and  Chinese  Lan-­‐guage  and  Literature  in  Tsinghua  University,  China,  he  pursued  and  received  his  PhD  Degree  of  Biophysics  in  the  Key  Laboratory  of  Cognitive  Science  and  Beijing  MRI  Centre,  Institute  of  Biophysics,  Chinese  Academy  of  Sciences,  China,  studying  the  acoustic  physical  parameters  on  the  sensory  gating  effects  of  Electroencepha-­‐lography  (EEG)  in  animals.  He  was  also  one  of  the  major  developers  and  owners  of  the  patent:  'Dynamic  Analy-­‐sis  with  Pupilometer  for  Detecting  Drug  Abusers',  which  is  now  widely  used  by  Chinese  police  in  anti  drug-­‐abuse  practices.  Presently,  Dr  Zhou  is  working  on  understanding  the  brain  morphology  in  human  using  novel  neuroimaging  methods.  

Regional  Cortical  Thickness  and  Asymmetry  Differences  from  Children  to  Older  Adults  

D  Zhou  The  cerebral  cortex  is  a  highly  convoluted  structure  with  an  extended  surface  area  of  on  average  2.5  square  feet,  and  a  normal  thickness  of  about  3  mm.  Recently,  technological  advantages  enable  the  quantification  of  cortical  thickness  in  vivo  by  estimating  as  the  distance  between  pial-­‐cortical  surface  and  gray-­‐white  interface,  using  3D  isotropic  T1-­‐weighted  images  with  the  Laplace's  Equation.  In  a  typically  developed  brain,  the  thickness  varies  across  the  cortical  mantle,  as  well  as  the  left-­‐  and  right-­‐  paired  regions  between  hemispheres.  The  measurement  of  cortical  thickness  also  allows  to  relate  cognitive  abilities,  effects  of  developmental,  aging,  gender  and  hemi-­‐sphere  to  subtle  structural  changes  in  the  gray  matter  of  human  brain.  In  the  current  research,  we  investigated  the  age  and  gender  effects  on  cortical  thickness  and  its  asymmetry  between  hemispheres  in  272  healthy  partici-­‐pants  (139  females,  260  right-­‐handed,  5  -­‐  67  years)  with  high  resolution  T1-­‐weighted  images  acquired  at  1.5T  MRI  scanner  and  processed  with  the  CIVET  1.1.9  pipeline  at  the  Montreal  Neurological  Institute  (MNI).  Al-­‐most  the  whole  cortical  mantle  was  found  thinning  with  age,  while  the  inferior  temporal  and  temporal  pole  ar-­‐eas  were  thickened  with  age.  Males’  cortex  was  found  thinner  than  females’.  Brain  asymmetry  was  found  in  a  particular  way  that  in  the  frontal  part  of  the  brain,  the  lateral  side  was  rightward  (left  <  right),  while  the  medial  side  was  leftward,  and  in  the  posterior  part  of  the  brain,  the  lateral  side  was  leftward,  while  the  medial  side  was  rightward.  Cortical  asymmetry  patterns  varied  with  age,  but  lacked  of  gender  differences.  

Page 23: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -22- *    

Presentation 3.4 – 17:00

Alison  King,  PhD  –  Radiology,  University  of  Calgary  I  have  always  been  interested  in  how  non-­‐invasive  imaging  can  help  us  under-­‐stand  movement  and  physiology  inside  living  organisms.  In  January  2010,  I  started  working  on  MRI  and  musculoskeletal  research.  For  this  project,  I  have  been  developing  an  open-­‐bore,  low-­‐field  magnet  to  investigate  soft  tissue  move-­‐ment  during  knee  flexion.  I  am  interested  in  the  spectrum  of  physiology,  from  how  behaviour  affects  it,  to  how  molecules  underpin  it,  and  am  looking  forward  to  developing  a  standing  0.2T  magnet  to  investigate  moving,  loaded  joints,  and  to  using  a  3T  magnet  to  look  at  molecular  changes  in  musculoskeletal  disease.  During  my  PhD,  I  received  NSERC  and  the  Department  of  Fisheries  and  Oceans  graduate  scholarships  to  develop  imaging  ultrasound  for  monitor-­‐ing  invertebrate  cardiovascular  contractions.  My  findings  on  how  these  contractions  change  with  behavioural  state  were  published  in  first-­‐tier  international  journals  such  as  the  Journal  of  Experimental  Biology  and  Animal  Behaviour.  When  I  am  not  developing  ways  to  use  non-­‐invasive  imaging,  I  enjoy  furthering  my  understanding  of  movement  by  skiing,  dancing  and  backcountry  backpacking.  

Quite  a  Stretch:  Deep  Knee  Bends  Studied  with  Low-­‐field  MRI  

AJ  King,  C  Deng,  R  Tyson,  J  Sharp,  JF  Dunn  In  the  study  of  joint  function,  MRI  offers  advantages  over  other  imaging  modalities  because  it  can  image  soft  tissues  as  well  as  bones.  Low-­‐field  MRI  offers  particular  advantages  because  scanners  can  be  built  with  an  open  bore  that  accommodates  all  knee  flexion  angles.  The  normal  range  of  daily  knee  motion  is  thought  to  be  approximately  10-­‐120°  of  flexion,  but  high-­‐field  scanners  typically  only  accommodate  0-­‐30°.  By  understanding  soft  tissue  function  during  knee  flexion  in  healthy  in  vivo  knees,  it  is  thought  that  we  will  better  understand  the  etiology  of  knee  pathology  and  improve  surgical  knee  reconstructions  and  prostheses.  As  proof  of  concept  for  using  open-­‐bore  MRI  to  monitor  com-­‐plex  3D  soft  tissue  changes  from  extended  (“straight”)  to  flexed  (“bent”)  knees,  we  undertook  a  study  of  the  posterior  cruciate  ligament  (PCL)  during  flexion.  This  ligament  is  critical  in  maintaining  knee  stability.  While  most  of  the  poste-­‐rior  side  of  the  PCL  is  visible  in  a  dissected  knee,  the  anterior  side  is  blocked  by  the  tibial  crest  when  the  knee  is  ex-­‐tended,  and  by  the  patella  when  the  knee  is  flexed.  Therefore,  the  length  of  anterior  side  is  difficult  to  measure  in  vivo  without  using  MRI.  

Using  a  0.2  T,  open-­‐bore  scanner,  knees  of  7  healthy  volunteers  were  imaged  in  vivo  while  passively  extended  and  while  passively  flexed  to  120°.  We  used  a  3D  SSFP  pulse  sequence  because,  of  the  pulse  sequences  tested,  it  produced  better  contrast-­‐to-­‐noise-­‐ratio  per  unit  time  for  the  ligaments.  Images  could  be  obtained  in  <6  min.  The  posterior  cru-­‐ciate  ligament  (PCL)  was  segmented  from  the  MR  images  and  reconstructed  in  3D  using  Amira  software  (Visage  Im-­‐aging).  We  measured  the  longest  path  between  the  PCL’s  femoral  attachment  and  its  tibial  attachment  on  the  PCL’s  anterior  side  and  posterior  side.  The  anterior  aspect  increased  26.1±4.4%  (mean  ±  standard  deviation)  in  length  after  flexion  (p<0.001,  paired  t-­‐test,  t=27.023,  n=7,  tcrit  =2.447).  The  posterior  side,  however,  did  not  change  length  (3.8±7.0%,  p=n.s.,  paired  t-­‐test,  t=1.467,  n=7,  tcrit  =2.447).  This  is  the  first  step  in  visualizing  and  quantifying  soft  tis-­‐sues  such  as  ligaments,  tendons  and  the  menisci  during  joint  flexion.  

While  many  soft  tissues  of  the  knee  remain  in  similar  orientations  to  their  underlying  bones  during  knee  flexion,  ligaments  do  not.  We  have  demonstrated  that  3D  image  reconstruction  allows  the  study  of  knee  soft  tissue  such  as  ligaments.  Our  initial  findings  suggest  that  there  are  important  differences  between  the  mechanical  environment  of  the  anterior  and  posterior  side  of  the  PCL,  between  the  biomechanical  properties  of  the  anterior  and  posterior  side  of  the  PCL  itself,  or  both.  Using  MRI,  other  groups  have  demonstrated  that  menisci  (washer-­‐like,  stabilizing  structures  within  the  joint  that  are  attached  to  the  tibia)  loose  structural  integrity  with  the  onset  of  osteoarthritis,  a  disease  his-­‐torically  thought  to  only  be  of  the  cartilage.  Future  investigations  in  our  lab  will  include  how  the  dynamics  of  the  PCL  are  altered  in  diseased  states  (e.g.  osteoarthritis)  and  after  PCL  reconstruction  surgery.  

Page 24: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -23- *    

Presentation 3.5 – 17:15

Lisa  Marie  Langevin,  PhD  -­‐  Behavioural  Research  Unit,  Alberta  Chil-­‐dren’s  Hospital  Dr  Lisa  Marie  Langevin  is  currently  a  postdoctoral  research  fellow  in  the  Behav-­‐ioural  Research  Unit  at  the  Alberta  Children’s  Hospital.  Dr  Langevin  received  her  undergraduate  degrees  in  Psychology  and  Cellular,  Molecular,  Microbial  Biology  from  the  University  of  Calgary  in  2003,  and  went  on  to  complete  her  doctoral  training  in  Neuroscience  the  lab  of  Dr  Carol  Schuurmans  examining  mammalian  neocortical  development.  Deciding  to  apply  her  expertise  in  brain  development  genetics  to  an  applied  field,  Dr  Langevin  has  recently  begun  her  postdoctoral  training  with  Dr  Deborah  Dewey  at  the  Alberta  Children’s  Hospital.  Her  current  research  investigates  the  neu-­‐rophysiology  and  genetics  related  to  co-­‐occurring  attention,  motor  and  learning  disorders  in  children.  

Examining  the  Common  Neurobiological  Basis  of  Motor  and  Attention  Deficits  in  Neurodevelopmental  Disorders  

LM  Langevin,  B  Goodyear,  C  Beaulieu,  S  Crawford,  D  Dewey  During  early  childhood,  the  development  of  motor  functioning  is  essential  for  participation  in  play,  sports  and  social  inter-­‐action.  Developmental  coordination  disorder  (DCD)  impairs  the  acquisition  of  novel  motor  skills,  and  is  frequently  coinci-­‐dent  with  other  neurodevelopmental  disorders  such  as  Attention  Deficit  Hyperactivity  Disorder  (ADHD).  Motor  impair-­‐ments  and  deficits  in  attentional  functioning  are  also  manifested  in  autism  spectrum  disorders  (ASD).  In  recent  investiga-­‐tions  of  ASD  and  ADHD,  attentional  and  motor  symptoms  have  been  attributed  to  genetic  and/or  environmental  impacts  on  developmental  brain  anatomy.  In  contrast  to  the  numerous  imaging  studies  examining  ADHD  and  ASD,  structural  imaging  research  on  children  diagnosed  with  DCD  and  comorbid  conditions  are  extremely  limited.    

Response  inhibition  and  contextual  fine  motor  performance  skills  are  frequently  deficient  in  individuals  with  ASD,  ADHD  and  DCD.  The  underlying  mechanism  for  these  impairments  may  involve  alteration  of  normal  white  matter  circuitry,  leading  to  reduced  activation  of  neural  networks.  Previous  studies  have  shown  reduced  integrity  and  lateralization  of  spe-­‐cific  white  matter  tracts  in  individuals  with  ADHD  and  ASD.  Additionally,  poorer  performance  on  attention  and  motor  tasks  has  been  associated  with  reduced  activation  of  anterior  brain  regions  in  individuals  with  ASD,  ADHD  and  DCD.  Whether  similar  white  matter  abnormalities  underlie  both  the  motor  and  attention  deficits  in  DCD  and  ADHD  has  not  been  exam-­‐ined.  

This  study  investigates  the  involvement  of  white  matter  circuitry  in  motor  and  attention  deficits  in  participants  with  iso-­‐lated  or  co-­‐occurring  DCD,  ADHD  and  other  neurodevelopmental  disorders  (e.g.,  ASD,  reading  disability).  Using  fMRI  and  diffusion  tensor  imaging  (DTI)  of  brain  structures  in  children  (ages  8-­‐17)  we  examined  white  matter  associated  with  neu-­‐rodevelopmental  disorders.  On  the  basis  of  a  detailed  neuropsychological  assessment,  the  participants  were  grouped  into  diagnostic  categories.  While  undergoing  an  MRI  scan,  participants  completed  two  button-­‐pressing  tasks  of  varying  com-­‐plexity  followed  by  an  inhibition  task.  Measures  of  response  time,  accuracy,  and  inhibition  errors  were  collected  and  com-­‐pared  to  age-­‐matched  controls.  DTI  data  was  assessed  in  specific  white  matter  tracts  using  a  region  of  interest  (ROI)  tracto-­‐graphy  approach.  We  focused  on  tracts  that  comprise  cortical  and  subcortical  circuits  responsible  for  executive  functioning  (frontal-­‐striatal  circuit),  attention  (prefrontal  and  hippocampal  formations),  visuospatial  processing  (commissural  and  lon-­‐gitudinal  fibres)  and  motor  planning  (fronto-­‐striatal-­‐cerebellar  circuitry).    

The  aim  of  this  study  is  to  identify  structural  commonalities  among  DCD,  ADHD,  and  other  neurodevelopmental  condi-­‐tions.  In  future,  this  data  will  be  used  to  conduct  neuroimaging  genetics  studies  that  will  enable  identification  of  shared  mechanisms  that  result  in  neurodevelopmental  deficits.  Understanding  the  genetic  basis  of  structural  variations  in  specific  brain  areas  and  the  related  clinical  outcomes  will  have  profound  consequences  with  respect  to  earlier  identification,  and  clinical,  behavioural  and  academic  intervention  for  families  affected  by  DCD,  ADHD  and  ASD.  

Page 25: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -24- *    

Presentation 3.6 – 17:30

Stefano  Peca,  MSc  -­‐  Seaman  Family  MR  Centre,  University  of  Calgary  Stefano  earned  his  MSc  in  Physics  in  2004  and  his  Specialization  in  Medical  Phys-­‐ics  in  2009,  both  at  “La  Sapienza”  University  in  Rome,  investigating  epilepsy  through  functional  MR  spectroscopy.  Later  that  year,  he  moved  to  Calgary  to  con-­‐tinue  his  training  in  fMRI.  Stefano  is  now  in  his  second  year  investigating  Cerebral  Amyloid  Angiopathy  (CAA),  supervised  by  Dr  Brad  Goodyear  and  Dr  Eric  Smith.  The  purpose  of  this  study  is  to  help  identify  the  mechanisms  by  which  CAA  causes  cognitive  impairment  and  its  biomarkers.  

The  Hemodynamic  Response  in  fMRI:  Applications  in  Cerebral  Amyloid  Angiopathy.  

S  Peca,  B  Goodyear,  C  McCreary,  E  Smith  As  a  neuronal  population  increases  its  firing  rate,  a  signaling  occurs  which  ultimately  leads  to  a  local  increase  in  blood  flow,  characterized  by  the  so-­‐called  hemodynamic  response  function  (HRF).  In  functional  MRI,  knowledge  of  the  HRF’s  shape  may  be  crucial  in  setting  up  an  adequate  data-­‐fitting  model.  Interestingly,  the  HRF  has  been  shown  to  vary  across  brain  regions  and  across  subjects.  In  addition,  alterations  of  the  hemodynamic  response  may  be  indicative  of  some  pathologies  of  the  vascular  system,  particularly  cerebral  small  vessel  disease.  In  this  brief  talk,  we  will  first  review  the  basics  of  the  hemodynamic  response  and  its  relevance  to  fMRI.  A  simple  method  to  estimate  the  HRF  from  the  fMRI  data  using  a  basis  set  of  functions  will  then  be  introduced  (from  Woolrich  &  Smith  2004;  available  in  FSL).  Finally,  results  on  an  fMRI  study  involving  cerebral  amyloid  angiopa-­‐thy  (CAA)  patients  will  be  presented,  showing  how  differences  in  the  HRF  may  be  interpreted,  and  how  these  differences  may  affect  fMRI  results.  

Page 26: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -25- *    

Invited  Speakers  and  Registered  Attendees  Registrants  as  of  Monday  18  April  2011    

Name City Institution Email

Andersen, Linda Calgary University of Calgary [email protected]

Alto, Hilary Calgary Innervision Med Tech [email protected]

Arnold, Aiden Calgary University of Calgary [email protected]

Banik, Shantanu Calgary University of Calgary [email protected]

Baron, Corey Edmonton University of Alberta [email protected]

Bealieu, Christian Edmonton University of Alberta [email protected]

Becker, Nathan Calgary University of Calgary [email protected]

Beers, Craig Calgary University of Calgary [email protected]

Beg, Faisal Burnaby, BC Simon Fraser University [email protected]

Beladi, Somaieh Calgary University of Calgary [email protected]

Buries, Ford Calgary University of Calgary [email protected]

Changizi, Neda Calgary University of Calgary [email protected]

Chen-Baron, June Edmonton University of Alberta [email protected]

Cheng, Hing Calgary University of Calgary [email protected]

Chow, Kelvin Edmonton University of Alberta [email protected]

Crites Battie, Michele Edmonton University of Alberta [email protected]

Davies, Tim Calgary Innervision Med Tech [email protected]

Dewey, Deborah Calgary Alberta Children’s Hospital [email protected]

Doiron, Amber Calgary University of Calgary [email protected]

Dunn, Jeff Calgary University of Calgary [email protected]

Ethan, Macdonald Calgary University of Calgary [email protected]

Feldman, Rebecca Edmonton University of Alberta [email protected]

Flewit, Jacqueline Calgary Foothills Medical Centre [email protected]

Fortin, Maryse Edmonton University of Alberta [email protected]

Francois, Moreau Calgary Foothills Medical Centre [email protected]

Frayne, Richard Calgary University of Calgary [email protected]

Gauderon, Philippe Calgary University of Calgary [email protected]

Gaxiola, Ismael Calgary University of Calgary [email protected]

Gazzi-Macedo, Luciana Edmonton University of Alberta [email protected]

Goodyear, Brad Calgary University of Calgary [email protected]

Goghari, Vina Calgary University of Calgary [email protected]

Harker, Jodi Calgary Foothills Medical Centre [email protected]

Page 27: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -26- *    

Name City Institution Email

Hassel, Stefanie Calgary University of Calgary [email protected]

Iaria, Giuseppe Calgary University of Calgary [email protected]

King, Alison Calgary University of Calgary [email protected]

Kosior, Jayme Calgary Cybertrial Med Software [email protected]

Kosior, Rob Calgary University of Calgary [email protected]

Lama, Sanju Calgary University of Calgary [email protected]

Langevin, Lisa-Marie Calgary Alberta Children’s Hospital [email protected]

Liu, Irene Calgary University of Calgary [email protected]

Liu, Min Edmonton University of Alberta [email protected]

McLeod, Kevin Calgary University of Calgary [email protected]

McCreary, Cheryl Calgary University of Calgary [email protected]

Misik, Warren Calgary University of Calgary [email protected]

Modi, Jayesh Calgary University of Calgary [email protected]

Moreau, Francois Calgary University of Calgary [email protected]

O’Brien, Brian Calgary University of Calgary [email protected]

Peca, Stefano Calgary University of Calgary [email protected]

Patton, David Calgary University of Calgary [email protected]

Ponjavic, Karla Lethbridge University of Lethbridge [email protected]

Quirk, Sarah Calgary Foothills Medical Centre [email protected]

Rangayyan, Raj Calgary University of Calgary [email protected]

Slone, Ted Calgary University of Calgary [email protected]

Smith, Mike Calgary University of Calgary [email protected]

Stobbe, Robert Edmonton University of Alberta [email protected]

Thompson, Richard Edmonton University of Alberta [email protected]

Tsang, Adrian Edmonton University of Alberta [email protected]

Tuor, Ursula Calgary University of Calgary [email protected]

Wang, Yue Edmonton University of Alberta [email protected]

Zelinski, Erin Lethbridge University of Lethbridge [email protected]

Zhang, Yunyang Calgary University of Calgary [email protected]

Zhou, Dongming Edmonton University of Alberta [email protected]

Zhu, Hong-mei Toronto, ON York University [email protected]

Zvaigzne, Cheryl Calgary University of Calgary [email protected]

 

Page 28: ALBERTA IMAGING SYMPOSIUM 2011

Hopewell Professorship Alberta Imaging Symposium 2011

April 2011 -27- *    

Additional  Imaging  Meeting  of  Interest