aircraft control lecture 4

Upload: arief-hadiyanto

Post on 04-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 aircraft control Lecture 4

    1/20

  • 7/29/2019 aircraft control Lecture 4

    2/20

    Fall2004 16.33341AircraftDynamics

    Notecandevelopgoodapproximationofkeyaircraftmotion(Phugoid)using

    simple

    balance

    between

    kinetic

    and

    potential

    energies.

    Consideranaircraft insteady, levelflightwithspeedU0 andheight

    h0. ThemotionisperturbedslightlysothatU0 U =U0+u (1)h0 h=h0+h (2)

    Assume that E = 1mU2 +mgh is constant before and after the

    2perturbation. Itthenfollowsthatu ghU0

    FromNewtonslawsweknowthat,intheverticaldirectionmh=L W

    1whereweightW =mgandliftL=2SCLU2 (S isthewingarea).

    Wecanthenderivetheequationsofmotionoftheaircraft: 1

    mh=

    L

    W

    =

    SCL(U

    2 U0

    2

    )

    (3)21= SCL((U0+u)2 U02)1SCL(2uU0)(4)22

    ghU0 =(SCLg)h (5) SCL

    U0 Sinceh= hand for theoriginalequilibriumflightconditionL=1W =2(SCL)U2 =mg,wegetthat0 2

    SCLg g=2

    m U0Combinetheseresulttoobtain:

    h+2h=0 , g2U0

    These equations describe an oscillation (called the phugoid oscilla-tion)ofthealtitudeoftheaircraftaboutitnominalvalue.Onlyapproximatenaturalfrequency(Lanchester),butvalueclose.

  • 7/29/2019 aircraft control Lecture 4

    3/20

    k)

    Fall2004 16.33342 Thebasicdynamicsare:

    I I

    F =mvc and T =H1

    B vc TransportThm.F =vc + BIm

    B

    BI T =H + H

    Basicassumptionsare:

    1.Earthisaninertialreferenceframe2.A/Cisarigidbody3.BodyframeBfixedtotheaircraft(i,j,

    BI Instantaneousmappingofvc and intothebodyframe:BI

    =Pi+Qj+Rk vc =Ui+Vj+Wk P U BIB =Q (vc)B = VR W

    By symmetry, we can show that Ixy = Iyz = 0, but value of Ixzdepends on specific frame selected. Instantaneous mapping of theangularmomentum

    H=Hxi+Hyj+HzkintotheBodyFramegivenby

    Hx Ixx 0 Ixz PHB =Hy= 0 Iyy 0 Q

    Hz Ixz 0 Izz R

  • 7/29/2019 aircraft control Lecture 4

    4/20

    1

    Fall2004 16.33343 Theoverallequationsofmotionarethen:

    1 B

    F = vc +BI

    vcm X U 0 R Q U

    mY = V + 0 P V RZ W Q P 0 W

    U + QWRV = V + RUPWW+ PV QU

    B

    BIT = H + H

    L IxxP + IxzR 0 R Q Ixx 0 Ixz PM = IyyQ + 0 P 0 Iyy 0 QR

    P 0 Ixz 0 Izz RN IzzR+ IxzP Q IxxP + IxzR +QR(IzzIyy) + PQIxz

    = IyyQ +PR(IxxIzz) + (R2P2)Ixz

    IzzR+ IxzP +PQ(IyyIxx) QRIxz Clearly theseequations arevery nonlinearand complicated, and we

    havenotevensaidwhereFandTcomefrom. = Needtolinearize!!Assumethattheaircraft isflying inanequilibriumconditionand

    wewilllinearizetheequationsaboutthisnominalflightcondition.

  • 7/29/2019 aircraft control Lecture 4

    5/20

    Fall2004 16.33344Axes

    ButfirstweneedtobealittlemorespecificaboutwhichBodyFrame

    wearegoinguse. Severalstandards:1.BodyAxes - Xalignedwith fuselagenose. Zperpendicular to

    Xinplaneofsymmetry(down). YperpendiculartoXZplane,totheright.

    2.WindAxes- Xalignedwithvc. ZperpendiculartoX(pointeddown).

    Y

    perpendicular

    to

    XZ

    plane,

    off

    to

    the

    right.

    3.StabilityAxes- Xalignedwithprojectionofvc intothefuselage

    planeofsymmetry. ZperpendiculartoX(pointeddown). Ysame.

    RELATIVEWIND

    ( )

    ( )

    ( )

    B ODY

    Z-AXIS

    B ODY

    Y -AXIS

    X-AXIS

    WIND

    X-AXIS

    S T AB ILITY

    X-AXIS

    B ODY

    Advantagestoeach,buttypicallyusethestabilityaxes.Indifferentflightequilibriumconditions,theaxeswillbeoriented

    differentlywithrespecttotheA/Cprincipalaxesneedtotrans-form(rotate)theprincipalinertiacomponentsbetweentheframes.Whenvehicleundergoesmotionwith respect to theequilibrium,StabilityAxesremainfixedtoairplaneas ifpaintedon.

  • 7/29/2019 aircraft control Lecture 4

    6/20

    Fall2004 16.33345 Canlinearizeaboutvarioussteadystateconditionsofflight.Forsteadystateflightconditionsmusthave

    F Faero+ Fthrust = 0 and T = 0 = Fgravity+ 3Soforequilibriumcondition,forcesbalanceontheaircraft

    L= W andT = D AlsoassumethatP = Q= R= U = V = W = 0

    Imposeadditionalconstraintsthatdependonflightcondition:3Steadywings-levelflight = = = = 0

    Key Point: While nominal forces and moments balance to zero,motion about the equilibrium condition results in perturbations totheforces/moments.RecallfrombasicflightdynamicsthatliftLf = CL0 where:03CL =liftcurveslopefunctionoftheequilibriumcondition30 =nominalangleofattack(anglethatwingmeetsairflow)But,asthevehiclemovesabouttheequilibriumcondition,would

    expectthattheangleofattackwillchange= 0+

    ThustheliftforceswillalsobeperturbedLf = CL(0+ ) = Lf + Lf0

    Canextendthisideatoalldynamicvariablesandhowtheyinfluence

    allaerodynamicforcesandmoments

  • 7/29/2019 aircraft control Lecture 4

    7/20

    Fall2004 16.33346GravityForces

    GravityactsthroughtheCoMinverticaldirection(inertialframe+Z)Assumethatwehaveanon-zeropitchangle0NeedtomapthisforceintothebodyframeUsetheEulerangletransformation(215)

    0 sinFg =T1()T2()T3()

    0

    =mg

    sincos

    Bmg coscos

    Forsymmetricsteadystateflightequilibrium,wewilltypicallyassumethat0,0 =0,so sin0

    Fg =mg 0 Bcos0

    UseEuleranglestospecifyvehiclerotationswithrespecttotheEarthframe

    = QcosRsin = P+Qsintan+Rcostan = (Qsin+Rcos)sec

    Notethatif0,then Q Recall: Roll,Pitch,andHeading.

  • 7/29/2019 aircraft control Lecture 4

    8/20

    Fall2004 16.33347Linearization

    Definethetrimangularratesandvelocities P Uo

    BIo = Q (vc)o = 0 B BR 0

    whichareassociatedwiththeflightcondition. In fact, thesedefinethetypeofequilibriummotionthatwelinearizeabout.Note:W0 = 0 sinceweareusingthestabilityaxes,andV0 = 0 becauseweareassumingsymmetricflight

    ProceedwithlinearizationofthedynamicsforvariousflightconditionsNominal Perturbed PerturbedVelocity Velocity Acceleration

    Velocities U0, U = U0+ u U = uW0 = 0, W = w W = w

    V0 = 0, V = v

    V = vAngular P0 = 0,Rates Q0 = 0,

    R0 = 0,P = p P = pQ= q

    Q =q

    R= r R = rAngles 0, = 0+ =0 = 0, = =0 = 0, = =

  • 7/29/2019 aircraft control Lecture 4

    9/20

    Fall2004 16.33348

    W C.G.

    0VT

    VT0= U0

    XE

    X0

    X

    q

    Z

    Z0ZE

    or

    0

    0 0

    Horizontal

    U = U + u

    Down

    Figure1:PerturbedAxes.Theequilibriumconditionwasthattheaircraftwasangledupby0withvelocityVT0 = U0.Thevehiclesmotionhasbeenperturbed(X0 X)sothatnow = 0+ andthevelocityisVT = VT0.NotethatVT isnolongeralignedwiththeX-axis,resultinginanon-zerouandw.Theangle iscalledtheflightpathangle,anditprovidesameasureoftheangleofthevelocityvectortotheinertialhorizontalaxis.

  • 7/29/2019 aircraft control Lecture 4

    10/20

    Fall2004 16.33349 Linearization forsymmetricflight

    U = U0+ u,V0 = W0 = 0,P0 = Q0 = R0 = 0.Notethattheforcesandmomentsarealsoperturbed.

    1[X0+ X] = U + QWRV u + qwrvu

    m 1

    [Y0+ Y] = V + RUPWm

    v + r(U0+ u)

    pw v + rU0

    1 [Z0+ Z] = W+ PV QU w +pvq(U0+ u)m

    w qU0 X u 1

    1Y = v+ rU0 2m

    Z w qU0 3

    Attitudemotion:

    L IxxP + IxzR +QR(IzzIyy) + PQIxz

    M = IyyQ +PR(IxxIzz) + (R2P2)IxzN IzzR+ IxzP +PQ(IyyIxx) QRIxz

    L Ixxp + Ixzr 4M = Iyyq 5N Izzr+ Ixzp 6

  • 7/29/2019 aircraft control Lecture 4

    11/20

    Fall2004 16.333410 Keyaerodynamicparametersarealsoperturbed:

    TotalVelocity2 2)1/2 U0+uVT = ((U0+u)2+v +w

    PerturbedSideslipangle = sin1(v/VT)v/U0

    PerturbedAngleofAttackx = tan1(w/U)w/U0

    Tounderstandtheseequationsindetail,andtheresultingimpactonthevehicledynamics,wemustinvestigatethetermsX ...N.Wemustalsoaddresstheleft-handside(F,T)Netforcesandmomentsmustbezeroinequilibriumcondition.AerodynamicandGravityforcesareafunctionofequilibriumcon-

    ditionANDtheperturbationsaboutthisequilibrium. Predictthechangestotheaerodynamicforcesandmomentsusinga

    firstorderexpansioninthekeyflightparametersX X X X Xg

    X = U+ W+ W+ +...+ +XcU W W X X X X Xg

    = u+ w+ w+ +...+ +XcU W W X calledstabilityderivativeevaluatedateq.condition.U Givesdimensionalform;non-dimensionalformavailableintables. Clearly approximation since ignores lags in the aerodynamics forces(assumesthatforcesonlyfunctionofinstantaneousvalues)

  • 7/29/2019 aircraft control Lecture 4

    12/20

    Fall2004 16.333411StabilityDerivatives

    First proposed by Bryan (1911) has proven to be a very effec-

    tivewaytoanalyzetheaircraftflightmechanicswellsupportedbynumerousflighttestcomparisons.

    Theforcesandtorquesactingontheaircraftareverycomplexnonlin-earfunctionsoftheflightequilibriumconditionandtheperturbationsfromequilibrium.Linearizedexpansioncaninvolvemanytermsu, u,...,w, w,...u, w, Typicallyonlyretainafewtermstocapturethedominanteffects.

    Dominantbehaviormosteasilydiscussedintermsofthe:Symmetricvariables: U,W,Q&forces/torques: X,Z,andMAsymmetricvariables: V,P,R&forces/torques: Y,L,andN

    ObservationfortrulysymmetricflightY,L,andN willbeexactlyzeroforanyvalueofU,W,QDerivativesofasymmetricforces/torqueswithrespecttothesym-

    metricmotionvariablesarezero.

    Further(convenient)assumptions:

    1.Derivativesofsymmetricforces/torqueswithrespecttotheasym-metricmotionvariablesaresmallandcanbeneglected.

    2.Wecanneglectderivativeswithrespecttothederivativesofthemotion variables, but keep Z/w and Mw M/w (aero-dynamic lag involved informingnewpressuredistributiononthewinginresponsetotheperturbedangleofattack)

    3.X/q isnegligiblysmall.

  • 7/29/2019 aircraft control Lecture 4

    13/20

    Fall2004 16.333412()/() X Y Z L M N

    uvwpqr

    00

    00

    000

    000

    000

    000

    000

    Notethatwemustalsofindtheperturbationgravityandthrustforcesandmoments

    Xg

    Zg=mgcos0

    0 =mgsin00

    Aerodynamicsummary:1A X= XU 0u+ XW 0wXu,x w/U02A Y v/U0,p,r3A Zu,x w/U0,x w/U0,q4A Lv/U0,p,r5A M u,x w/U0,x w/U0,q6A N v/U0,p,r

  • 7/29/2019 aircraft control Lecture 4

    14/20

    Fall2004 16.333413 Resultisthat,withtheseforce,torqueapproximations,

    equations1,3,5decouplefrom2,4,6

    1,3,5arethelongitudinaldynamicsinu,w,andq

    X muZ

    =

    m(wqU0)

    M I

    yyq

    XgX X + Xcu+ w+U W 0 0 0

    ZgZ Z Z Zw+ + Zcu+ w+ q+ WU W Q 0 0 00 0M M M w + M q+ Mcu+ w+U 0 W 0 W 0 Q 0

    2,4,6arethelateraldynamicsinv,p,andr

    Y m(v+ rU0)

    L = Ixxp + IxzrN Izzr + Ixzp

    Y Y Y v+0p+ r+ +YcV 0 P R 0

    L v+ L0p+ L r+ LcV 0 P R 0

    N N Nv+0p+ r+ NcV 0 P R 0

  • 7/29/2019 aircraft control Lecture 4

    15/20

    Fall2004 16.333414BasicStabilityDerivativeDerivation

    ConsiderchangesinthedragforcewithforwardspeedU

    D = 1/2VT2SCD2 2V2 = (u0+ u)2+ v + wT

    VT2 VT2= 2(u0+ u) = 2u0u u 0

    VT2 VT2Note: = 0 and = 0v 0 w 0

    Atreferencecondition: D VT2SCD=Du u 0 u 2 0 S

    2 CD V

    T2

    = u0 + CD02 u 0 u 0S 2 CD= + 2u0CD0u02 u 0

    Note D isthestabilityderivative,whichisdimensional.u

    Define nondimensional stability coefficient CDu as derivative ofCD withrespecttoanondimensionalvelocityu/u0

    D CDand CD0 (CD)0CD = 1VT2S CDu u/u02 0

    So( 0 correspondstothevariableatitsequilibriumcondition.

    )

  • 7/29/2019 aircraft control Lecture 4

    16/20

    Fall2004 16.333415Nondimensionalize:

    D Su0 CD=

    u0 + 2CD0u 0 2 u 0

    QS CD= + 2CD0u0 u/u0 0

    u0 D= (CDu + 2CD0)QS u 0

    Sogivenstabilitycoefficient,cancomputethedragforceincrement. NotethatMachnumberhasasignificanteffectonthedrag:

    CDu = CDu/u0 0 =u0a

    CDua 0 = M

    CDM

    where CDM canbeestimatedfromempiricalresults/tables.

    Aerodynamic Principles

    = Constant

    CD

    0

    Mcr0 1 2

    = 0.1CDM

    Mach number, M

    Thrustforces CTu = CTu/u0 0

    Tu 0 = CTu

    1u0QS

    Foraglider,CTu = 0Forajet,CTu 0Forapropplane,CTu = CD0

  • 7/29/2019 aircraft control Lecture 4

    17/20

    Fall2004 16.333416 Liftforcessimilartodrag

    L= 1/2VT

    2SCL

    L Su0 CL

    = + 2CL0 u 0 2 u0 u 0 QS CL

    = + 2CL0u0 u/u0 0 u0 L

    = (CLu + 2CL0)QS u 0

    where CL0 is the lift coefficient for the eq. condition and CLu =MCL

    M asbefore. Fromaerodynamictheory,wehavethatCL MCL|M=0CL = = CL

    1 M2 M 1 M2M2CLu = 1 M2CL0

    Derivatives: Nowconsiderwhathappenswithchangesintheangleofattack. Takederivativesandevaluateatthereferencecondition:Lift: CL

    C2L 2CL0Drag: CD = CDmin +eARCD =eARCL

  • 7/29/2019 aircraft control Lecture 4

    18/20

    Fall2004 16.333417 CombineintoX,Z ForcesAtequilibrium,forcesbalance.Usestabilityaxes,so0 =0Include the effect in the force balance of a change in on the

    forcerotationssothatwecanseetheperturbations.Assume perturbation is small, so rotations are by cos 1,

    sinX = T

    D+L

    Z = (L+D)C

    L

    Cx

    Cz

    z

    x

    V

    Note: = T at t = 0

    CD

    (t)

    (i.e., Static Trim)

    So,nowconsiderthederivativesoftheseforces:X T D L

    = +L+

    TThrustvariationwithverysmall 0 0

    Applyatthereferencecondition(=0),i.e. CX Nondimensionalizeandapplyreferencecondition:

    CX =

    CD +CL02CL0= CL0 CLeAR

    CX=

    0

  • 7/29/2019 aircraft control Lecture 4

    19/20

    Fall2004 16.333418AndfortheZ direction

    Z D L= D

    GivingCZ = CD0 CL

    RecallthatCM wasalreadyfoundduringthestaticanalysis Canrepeatthisprocessfortheotherderivativeswithrespecttothe

    forwardspeed. Forwardspeed:

    X T D L= +

    u u u uSothat

    u0 X u0 T u0 D=

    QS u 0 QS u 0 QS u 0 CXu CTu (CDu + 2CD0)

    SimilarlyfortheZ direction:Z L D

    = u u u

    Sothat u0 Z u0 L=

    QS u 0 QS u 0(CLu + 2CL0)CZu

    M2=

    1 M2CL0

    2CL0

    Manymorederivativestoconsider!

  • 7/29/2019 aircraft control Lecture 4

    20/20

    Fall2004 16.333419Summary

    PickedaspecificBodyFrame(stabilityaxes) from the listofalter-

    nativesChoice simplifies some of the linearization, but the inertias now

    changedependingontheequilibriumflightcondition.

    Since the nonlinear behavior is too difficult to analyze, we needed

    to consider the linearized dynamic behavior around a specific flightconditionEnablesustolinearizeRHSofequationsofmotion.

    Forcesand

    moments

    also

    complicated

    nonlinear

    functions,

    so

    we

    lin-earizedtheLHSaswell

    Enablesustowritetheperturbationsoftheforcesandmomentsintermsofthemotionvariables.Engineering insightallowsustoarguethatmanyofthestability

    derivatives that couple the longitudinal (symmetric) and lateral(asymmetric)motionsaresmallandcanbeignored.

    Approachrequiresthatyouhavethestabilityderivatives.Thesecanbemeasuredorcalculatedfromtheaircraftplanform

    andbasicaerodynamicdata.