afandi, a. n.; sulistyorini, yunis; el-shimy, m.; gao, x ... · the penetration of pollutant...

8
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X. Z.; Fujita, Goro; Miyauchi, Hajime The penetration of pollutant productions on dynamic generated power operations optimized using a novel evolutionary algorithm Published in: International Journal on Advanced Science, Engineering and Information Technology DOI: 10.18517/ijaseit.7.5.1635 Published: 01/01/2017 Document Version Publisher's PDF, also known as Version of record Please cite the original version: Afandi, A. N., Sulistyorini, Y., EL-Shimy, M., Gao, X. Z., Fujita, G., & Miyauchi, H. (2017). The penetration of pollutant productions on dynamic generated power operations optimized using a novel evolutionary algorithm. International Journal on Advanced Science, Engineering and Information Technology, 7(5), 1825-1831. https://doi.org/10.18517/ijaseit.7.5.1635

Upload: others

Post on 07-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

This is an electronic reprint of the original article.This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X. Z.; Fujita, Goro; Miyauchi, HajimeThe penetration of pollutant productions on dynamic generated power operations optimizedusing a novel evolutionary algorithm

Published in:International Journal on Advanced Science, Engineering and Information Technology

DOI:10.18517/ijaseit.7.5.1635

Published: 01/01/2017

Document VersionPublisher's PDF, also known as Version of record

Please cite the original version:Afandi, A. N., Sulistyorini, Y., EL-Shimy, M., Gao, X. Z., Fujita, G., & Miyauchi, H. (2017). The penetration ofpollutant productions on dynamic generated power operations optimized using a novel evolutionary algorithm.International Journal on Advanced Science, Engineering and Information Technology, 7(5), 1825-1831.https://doi.org/10.18517/ijaseit.7.5.1635

Page 2: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

Vol.7 (2017) No. 5

ISSN: 2088-5334

The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary Algorithm

A.N. Afandi1*, Yunis Sulistyorini2, M. EL-Shimy3, X.Z. Gao4, Goro Fujita5, Hajime Miyauchi6 1Electrical Engineering, Universitas Negeri Malang, Indonesia

*Correspondence: [email protected], [email protected]

2Department of Math, IKIP Budi Utomo, Indonesia E-mail: [email protected]

3Electric Power and Machines Department, Ain Shams University, Egypt

E-mail: [email protected]

6School of Electrical Engineering, Aalto University, Finland E-mail: [email protected]

5Electrical Engineering and Computer Science, Shibaura Institute of Technology, Japan

E-mail: [email protected]

6Computer Science and Electrical Engineering, Kumamoto University, Japan E-mail: [email protected]

Abstract—At Present, the environmental protection penetrates public awareness to decrease atmospheric emissions as important efforts for increasing living quality in air from various gaseous effects. Technically, it has forced industrial sectors to control pollutant productions while operating machineries of engineering processes to keep all contaminant materials. This condition has also forced the power system operation to modify operational strategies of thermal power plants considered pollutant productions from combustions of fossil fuels for reducing emissions. This paper demonstrates new approaches for measuring pollutant penetrations embedded in the single priority function considered an emission standard, a dynamic penalty factor, and Thunderstorm Algorithm (TA). By considering the IEEE 62-bus system model, results obtained show that the hourly computation has different performances for the 24 hours operation. It also indicates that pollutant discharges are dominated gradually by higher contributors associated with scheduled power plants. The convergence speed of TA is smooth and fast for determining the optimal solution, which are ranged in 6-20 for the cycle and 1.8-3.8 s for the time consumption. Moreover, the 24 hours operation is powered totally in 60,826.10 MW for feeding the total load of 56,820.50 MW. This operation also spends in 291,870.60 $ for the fuel procurement and 83,233.70 $ for the compensation of the pollutant production during existing 19 generating units. In total, the accumulation of pollutant discharges from 19 power plants is 68,012.20 kg. Keywords—economic operation; emission dispatch; penalty factor; power system; thunderstorm algorithm

I. INTRODUCTION Recently, energy consumptions become more important

issues to keep sustainable providers from various natural primary resources as long as customer usages for their utilities. The energy consumption also steers up the electric energy to drive many industrial sectors for supplying power demands and also provides for various load demands. In

general, electric energy is produced at power generations corresponded to the power system operation under technical conditions to maintain daily operations. In fact, demands are progressed gradually hour to hour affected dynamically to the operation to serve energy customers. In addition, the operation becomes a dynamic power system operation (DPSO) with its possibility fluctuations to face many problems while producing and transmitting power outputs at

1825

Page 3: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

p ot e nti al s e cti o ns, s u c h a s g e n er ati n g u nit s, tr a n s mis si o n a n d distri b uti o n li mits, l o a d s a n d utiliti es.

N o w a d a ys, t h e D P S O h as als o m et a gl o b al w ar mi n g c h a n g e is s u e a s a n eff ort f or c o ntr olli n g p oll ut a nt i m p a ct s i n air fr o m t h e f o s sil f u el c o m b u sti o n s [ 1- 5]. R e g ar di n g i n t hi s iss u e, t h e e n vir o n m e nt al pr ot e cti o n is als o c o nsi d er e d o n t h e D P S O t o pr es e nt p u bli c a w ar e n ess a n d t o d e cr e as e at m o s p h eri c e mis si o n s d uri n g pr o d u ci n g e n er g y at p o w er st ati o n s. F urt h er m or e, t his pr o bl e m is r e c o m m e n d e d t o m a n a g e c orr e ctl y i n or d er t o s el e ct t h e d e cisi o n wit hi n s uit a bl e r a n g es of c o nstr ai nt s a n d r e q uir e m e nt s ass o ci at e d wit h e mi ssi o n st a n d ar d s a n d o p er ati o n al c o n diti o ns [ 5- 1 1]. O n e of t h e m o st i m p ort a nt pr o bl e ms i n t h e D P S O is t o r e d u c e e mi ssi o n dis c h ar g e s fr o m f o ssil f u el c o m b u sti o n s at g e n er ati n g u nit s d uri n g e xisti n g t h er m al p o w er pl a nts ( T P P s) f or pr o d u ci n g el e ctri c e n er g y. T his pr o bl e m h as f or c e d t o m o dif y o p er ati o n al str at e gi es of T P P s c o nsi d er e d d e cr e asi n g air c o nt a mi n a nt s fr o m t h e D P S O, s u c h as C O; C O 2 ; S Ox ; a n d N Ox [ 2- 3], [ 1 2- 1 4].

I n p arti c ul ar, t h e D P S O n e e d s t o p a y d o u bl e att e nti o n o n t h e m a n a g e m e nt s yst e m t o f a c e t h e c o m pl e xit y o p er ati o n al pr o bl e ms a n d t o c o v er t h e e n vir o n m e nt al pr ot e cti o n r e q uir e m e nt. I n t h e s e as p e cts, t h e at m o s p h eri c e mi ssi o n r e d u cti o n b e c o m e s o n e of p o p ul ar iss u es o n t h e D P S O pr es e nt e d i n a n e missi o n di s p at c h str at e g y f or t h e d e cr e asi n g p er c e nt a g e c o ntri b uti o n as w ell as t h e fi n a n ci al c h ar g e of a n e n vir o n m e nt al c o m p e ns ati o n [ 1- 6], [ 1 5- 1 7]. M or e o v er, a c o n v e nti o n al str at e g y c a n n ot m e et e n vir o n m e nt al pr ot e cti o n r e q uir e m e nts b e c a u s e it o nl y c o nsi d er s mi ni mi z e d f u el c o st s t o tr e at p oll ut a nt pr o d u cti o ns [ 1 2], [ 1 7- 2 0].

T o c o v er t his c o n diti o n, a n o pti mi z ati o n str at e g y i s v er y i m p ort a nt f or mi ni mi zi n g e missi o n dis c h ar g es s u bj e ct e d t o m ai nt ai n t h e o pti m al c o m mitt e d p o w er o ut p uts [ 2 1- 2 2]. Pr a cti c all y, t h e D P S O is o p er at e d wit hi n 2 4 h o ur s f or t h e gi v e n l o a d s as l o n g as its fl u ct u ati o n fr o m pr es e nt h o ur t o n e xt h o ur. T his c o n diti o n i s als o us e d t o tr e at t h e d y n a mi c fi n a n ci al c h ar g e ( D F C) at e v er y h o ur r el at e d t o t h e i n di vi d u al g e n er ati n g f u el c o st a n d us e d t o m o nit or t h e d y n a mi c p oll ut a nt pr o d u cti o n ( D P P) i nli n e t h e D P S O f or 2 4 h o ur s [ 1- 7], [ 9- 1 2]. B y c o nsi d eri n g fi n a n ci al a n d p oll uti o n as p e cts, t h e s e pr o bl e ms b e c o m e a cr u ci al t as k t o s el e ct t h e c o m bi n e d g e n er ati n g u nits b as e d o n t h e b al a n c e of d y n a mi c pr o bl e ms t hr o u g h o ut a d y n a mi c o p er ati o n al pr o bl e m ( D O P) c o nsi d er e d d e m a n d c h a n g e s u n d er o p er ati o n al c o nstr ai nts t h e e n vir o n m e nt al r e q uir e m e nt [ 5- 7].

As o n e of t h e i m p ort a nt i ss u es o n t h e D P S O, t h e p oll ut a nt r e d u cti o n is a n i nt er esti n g t o pi c t o e v al u at e fr o m a diff er e nt vi e w as pr es e nt e d i n t hi s p a p er wit h i ntr o d u ci n g a n e w a p pr o a c h f or e v al u ati n g t h e pr o d u c e d p oll ut a nt d o mi n ati o n of T P P s. As t h e n o v el a p pr o a c h, it is a p pli e d t o t h e I E E E’s m o d el t o s e ar c h t h e b al a n c e b et w e e n D F C a n d D P P pr o bl e ms s ol v e d u si n g a n e w e v ol uti o n ar y al g orit h m.

II. M A T E RI A L A N D M E T H O D

A. D y n a mi c R e p r es e nt ati o n

C o n c er ni n g i n t h e D O P, d e m a n d c h a n g es ar e v er y i m p ort a nt f or e v er y h o ur c orr es p o n di n g t o r a m p li mit s t o all o w g e n er ati o n sit e s wit hi n p er mitt e d p o w er c h a n g e s at t h e w h ol e o p er ati n g p eri o d wit h c o nsi d eri n g t e c h ni c al a n d p oll ut a nt li mits [ 5- 7]. T h es e c o nstr ai nts ar e us e d t o p o s e

d esir e d s ol uti o n s at f e a si bl e r a n g e s f or t h e o pti m al p erf or m a n c e. M or e o v er, t h e D O P is a d v a n c e d fr o m a cl assi c al di s p at c h wit h i nt e gr ati n g a n e n vir o n m e nt al as p e ct o n T P P s f or d e cr e asi n g p oll ut a nt pr o d u cti o n s t o g et h er wit h t h e f u el c o ns u m pti o n pr es e nt e d i n t h e t ot al o p er ati n g c o st t hr o u g h a d y n a mi c e c o n o mi c dis p at c h ( D E D).

F or p erf or mi n g t h e D E D pr o bl e m at o v er all i nt er v als, it is c o m p ut e d u si n g E q u ati o n ( 4) a n d it is r e q uir e d b y s e v er al c o nstr ai nts i n t er ms of a n e q u alit y p o w er of t h e l o a d d e m a n d a n d c o m mitt e d g e n er ati n g u nit s, p o w er fl o ws wit h e m b e d di n g l o ss e s f or t h e li n es, c a p a cit y li mits of p o w er s, e a c h v olt a g e at e a c h b us, p o w er tr a n sf er c a p a bilit y li mit s, a n d r a m p li mit s. M at h e ati c all y, t h e D E D a n d it s li mit ati o n s f or t h es e w or k s ar e pr es e nt e d as f oll o ws:

∑ D F C t ot altT

t =1 = ∑ ∑ c i+ b i.P it+ a i P i

t2

n gi = 1

Tt= 1 ( 1)

∑ D P P

= ∑ ∑ γ + β . P + α P

( 2)

∑ Φ

=w. ∑ D F C

+ 1 − w . ∑ h . D P P

( 3)

D O P dis p at c h = mi ni mi z e ∑ Φ

( 4)

∑ P

= P D + P L

( 5)

P ≤ P

≤ P ( 6)

Q ≤ Q

≤ Q ( 7)

V ≤ V

≤ V ( 8)

S ≤ S

( 9)

P − P

≤ U R ( 1 0)

P

− P ≤ D R ( 1 1)

w h er e t i s p eri o d i nt er v als of ti m e (t = 1, 2, 3, …, T), T is a t ot al ti m e o p er ati o n, D F Ctt ot al is t ot al fi n a n ci al c h ar g e f or t h e f u el c o ns u m pti o n of g e n er ati n g u nit s ( $/ hr) at tt h of ti m e, Pi

t is o ut p ut p o w er of i t h g e n er ati n g u nit d uri n g ti m e i nt er v al t ( M W), n g is t ot al n u m b er of g e n er ati n g u nit s, a i, bi, ci ar e f u el c o st c o effi ci e nt s of it h g e n er ati n g u nit, D P Ptt ot al is t ot al p ol l ut a nt pr o d u cti o n of g e n er ati n g u nit s ( k g/ hr) at tt h of ti m e, α i, β i, i ar e e mis si o n c o effi ci e nts of i t h g e n er ati n g u nit, t

t ot al is D O P ( $/ hr) at t t h of ti m e, ht i s a p e n alt y f a ct or at tt h of ti m e, w i s a c o m pr o mi s e d f a ct or, P D t is p o w er l o a d d e m a n d d uri n g i nter v al t, P L t is tr a ns mi ssi o n l o ss d uri n g ti m e i nt er v al t, P Gp

t

a n d Q G pt ar e p o w er i nj e cti o n of l o a d fl o w at b us p d uri n g

ti me i nt er v al t, P D pt a n d Q D p

t ar e l o a d d e m a n d of l o a d fl o w

at b us p d uri n g ti m e i nt er v al t, V pt a n d V q

t ar e v olt a g e at b u s

p a n d q d uri n g ti m e i nt er v al t, P imi n is mi ni m u m o ut p ut

p o w er of i t h g e n er ati n g u nit, Pim a x is m a xi m u m o ut p ut p o w er

of it h g e n er ati n g u nit, Qim a x a n d Q i

mi n ar e m a xi m u m a n d mi n i m u m r e a cti v e p o w er of it h g e n er ati n g u nit, Q i

t is r e a cti v e p o w er o ut p ut of i t hg e n er ati n g u nit d uri n g ti m e i nt er v al t ( M var), V p

m a x a n d V pmi n ar e m a xi m u m a n d mi ni m u m v olt a g e

at b us p, S p qt is p o w er tr a nsf er b et w e e n b us p a n d q d uri n g

ti me i nt er v al t ( M v ar), S p qm a x is li mit of p o w er tr a nsf er

b et w e e n b us p a n d q, U D i is t h e u p r a m p li mit of it h

g e n er ati n g u nit a n d D R i is t h e d o w n r a m p li mit of it h

g e n er ati n g u nit.

B. D y n a mi c F a ct o r

1 8 2 6

F o c us e d o n p o w er pr o d u cti o ns, g e n er ati n g u nit s will b e

Page 4: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

c o nstr ai n e d b y r a m p li mits f or i n cr e asi n g a n d d e cr e asi n g p o w er pr o d u cti o ns [ 5- 7]. At t h e s a m e ti m e, t h e e n vir o n m e nt al r e q uir e m e nts als o f or c e T P P s f or r e d u ci n g p oll ut a nt dis c h ar g e s i n air t o g et h er wit h f u el c o ns u m pti o n s. M e a n w hil e, t h e D E D c o nsi st s of D F C a n d D P P pr o bl e ms wit h t h e i n di vi d u al p orti o n of f u el c o n s u m pti o n s a n d p oll ut a nt pr o d u cti o ns. It b e c o m es m ai n c o ntri b ut or s f or t h e D P S O i n a c c or d a n c e t o p o w er o ut p ut pr o d u cti o n s at g e n er ati n g u nits [ 5- 7], [ 1 1- 1 2], [ 1 4]. I n p arti c ul ar, T P P s dis c h ar g e diff er e nt a m o u nt s of t h e e mi ssi o n r el at e d t o t h e o w n h o url y p o w er o ut p ut t o m e et d e m a n d c h a n g es.

I n t hi s s e cti o n, t h e d o mi n ati o n of T P P s is pr es e nt e d i n a n e w p e n alt y f a ct or a p pr o a c h f or i nt e gr ati n g D P P a n d D F C pr o bl e ms a s a d o mi n a nt p e n alt y f a ct or ( D P F). T h e D P F ass u m e s t h at p oll ut a nt dis c h ar g es ar e d o mi n at e d b y l ar g er e mis si o n pr o d u c er s e x c e e d e d t h e all o w e d e mi ssi o n ( All w E mi). T o s h o w i n v ol v e m e nts of l ar g er c o ntri b ut or s, it is i ntr o d u c e d a n o v er r at e e mis si o n c o effi ci e nt ( O R E C) ass o ci at e d wit h t h e pr o d u c e d e mi ssi o n ( Pr o d E mi) a n d t h e All w E mi as gi v e n i n E q u ati o n ( 1 2). F or e a c h h o ur, it i s p erf or m e d usi n g f oll o wi n g e x pr essi o ns:

O R E C zt =

∑ T P E z st - ∑ T A E S zs

tg utu = 1

g utu = 1

n G zt ∑ T P E z s

tg ut u = 1

( 1 2)

h zt = h G z s

t (1 3 )

d h zt = O R E C z

t .r hzt ( 1 4)

w h er e O R E C zt is t h e o v er r at e e mi ssi o n c o effi ci e nt at t h e tt h

h o u r of t h e zt h it er ati o n; T P Ez st is t h e t ot al pr o d u c e d e mi ssi o n

at t h e tt h h o ur of t h e st h g e n er ati n g u nit of t h e zt h it er ati o n

( k g/ h); T A E Sz st is t h e t ot al all o w e d e mis si o n at t h e tt h h o ur of

t h e st h g e n er ati n g u nit of t h e zt h it er ati o n ( k g/ h); g u is t h e n u m b er of g e n er ati n g u nits at t h e t t h h o ur of t h e zt h it er ati o n; n G z

t is t h e n u m b er of g e n er ati n g u nits at t h e t t h h o ur of t h e zt h it er ati o n e x c e e d e d t h e all o w e d e mi ssi o n; t is p eri o d i nt er v als

of ti m e (t = 1, 2, 3, …, T), T is a t ot al ti m e o p er ati o n; h zt is a

p e n alt y f a ct or s et at t h e t t h h o ur of t h e zt h it er ati o n ( $/ k g);

h G z st is t h e i n di vi d u al p e n alt y f a ct or at t h e tt h h o ur of t h e st h

g e n er ati n g u nit e x c e e d e d t h e all o w e d e mi ssi o n of t h e z t h

it er ati o n st e p ( $/ k g); d hzt is t h e d o mi n a nt p e n alt y f a ct or at t h e

tt h h o ur of t h e zt h it er ati o n ( $/ k g); a n d r hzt is t h e s el e ct e d h Gzs

at t h e t t h h o ur of t h e zt h it er ati o n f or t h e hi g h e st T P Ezs .

C. T h u n d erst o r m Al g o rit h m

T o e v al u at e t h e D O P as pr es e nt e d i n t h e D E D b as e d o n D F C a n d D P P pr o bl e ms, t his as p e ct i s a d dr ess e d t o g e n er ati n g u nits o nli n e t h e s yst e m. I n t his s e cti o n, a n e w e v ol uti o n ar y c o m p ut ati o n will b e e x pl or e d t o c arr y o ut t h e D E D. I n g e n er al, t hi s m et h o d will b e d et ail e d as a n e v ol uti o n ar y al g orit h m w hi c h is c o nstr u ct e d fr o m a n at ur al i ns pir ati o n [ 6]. T h e n at ur al pr o c ess is s el e ct e d as t h e n e w i ns pir ati o n f or att e m pti n g a n e w e v ol uti o n ar y al g orit h m fr o m t h u n d er st or ms.

S e v er al y e ar s a g o, B e nj a mi n Fr a n kli n w a s d e m o n str at e d e arl y t o t est t h e t h e or y of li g ht ni n g pr a cti c e d his i d e a of a fl yi n g o bj e ct usi n g a kit e. N o w a d a ys, it is k n o w n t h at t h e li g ht ni n g i s c o n si d er e d as a n at m o s p h eri c dis c h ar g e w hi c h t y pi c all y o c c ur s d uri n g t h u n d er st or ms or ot h er p o ssi bilit y f a ct or s s u c h as v ol c a ni c er u pti o ns or d ust st or ms [ 2 3- 2 4]. I n p arti c ul ar, m a n y st u di es of t h u n d er st or ms h a v e r a pi dl y a d v a n c e d d uri n g t h e p ast c e nt ur y a n d m a n y eff orts h a v e

b e e n m a d e t o w ar d f or u n d er st a n di n g t h e m ulti pl e li g ht ni n g, t h u n d er st or ms, a n d t h eir c o ns e q u e n c es [ 2 3- 2 5].

I n t his s e cti o n, t h e s e m e c h a ni s ms ar e a d o pt e d t o b e c o m e a n i nt elli g e nt c o m p ut ati o n usi n g s e v er al st a g es a n d pr o c e d ur es as t h e t h u n d er st or m al g orit h m ( T A) f or mi mi c ki n g n at ur al pr o c e ss e s of t h e t h u n d er st or m. I n p arti c ul ar, t h e s e ar c hi n g m e c h a ni s m of T A f or s el e cti n g a s ol uti o n is c o n d u ct e d t o t h e stri ki n g pr o c ess es u si n g E q u ati o n ( 1 6). M or e o v er, T A als o c o n sist s of v ari o us dist a n c es of t h e d e pl o y e d str e a m er b y a h a z ar d o us f a ct or f or s pr e a di n g p o siti o n s of t h e stri ki n g p oi nt s.

Fi g. 1 Hi er ar c h y pr o c ess es of t h u n d erst or m al g orit h m

I n pri n ci pl e, t h e s e q u e n ci n g or d er of T A is gi v e n i n

s e v er al pr o c e d ur es as t h e p s e u d o- c o d es i n t er ms of Cl o u d P h as e, Str e a m er P h as e, a n d A v al a n c h e P h a s e [ 2 6- 2 7]. I n d et ail, t h es e m e c h a ni s ms ar e pr o vi d e d i n Fi g ur e 1. M at h e m ati c all y, m ai n f u n cti o ns ar e pr es e nt e d as f oll o w:

Cl o u d c h ar g e: Q = 1 + k. c . Q

( 1 5)

Stri ki n g p at h: D = Q

. b. k ( 16)

Pr o b a bilit y c h ar g e: pr o b Qsj

Q sjm

∑ Q sm f or m

Q sjn

∑ Q sn f or n

( 1 7)

w h er e Q sj is t h e c urr e nt c h ar g e, Qmi dj is t h e mi d dl e c h ar g es, s is t h e str e a mi n g fl o w, Dsj i s t h e stri ki n g c h ar g e’s p o siti o n, Q s d e p is t h e d e pl o y e d dist a n c e, n is t h e stri ki n g dir e cti o n of t he ht h, k is t h e r a n d o m n u m b er wit h [- 1 a n d 1], c is t h e r a nd o m wit hi n [ 1 a n d h], h is t h e h a z ar d o us f a ct or, b is t h e r a n d o m wit hi n ( 1- a), j ( 1, 2,.., a), a is t h e n u m b er of v ari a bl es, m i s t h e cl o u d si z e.

D. S yst e m M o d el

I n t h es e w or ks, t h e D P S O is si m ul at e d usi n g t h e I E E E- 6 2 b us s yst e m as m a n y pr e vi o u s st u di es a d o pt e d t h e st a n d ar d m o d el s. T h e I E E E- 6 2 b us s yst e m i s str u ct ur e d u si n g 6 2 b us es; 8 9 li n es; a n d 3 2 l o a d b us e s as d et ail e d i n R ef er e n c es [ 1 2], [ 2 0]. F urt h er m or e, t e c h ni c al d at a f or t h es e w or k s ar e gi v e n i n f oll o wi n g t a bl es.

T A B L E I P O W E R A N D R A M P L I MI T S

G e n P mi n

( M W) P m a x

( M W) Q mi n

( M V ar) Q m a x

( M V ar) D R i

(M W) U R i

(M W) G 1 5 0 3 0 0 0 4 5 0 6 5 1 0 2 G 2 5 0 4 5 0 0 5 0 0 6 5 1 5 3 G 3 5 0 4 5 0 - 5 0 5 0 0 6 5 1 5 3 G 4 0 1 0 0 0 1 5 0 2 5 3 4 G 5 5 0 3 0 0 - 5 0 3 0 0 6 5 1 0 2 G 6 5 0 4 5 0 - 5 0 5 0 0 6 5 1 5 3 G 7 5 0 2 0 0 - 5 0 2 5 0 6 5 6 8 G 8 5 0 5 0 0 - 1 0 0 6 0 0 6 5 1 7 0

1 8 2 7

Page 5: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

G 9 0 6 0 0 - 1 0 0 5 5 0 7 5 2 0 4 G 1 0 0 1 0 0 0 1 5 0 2 5 3 4 G 1 1 5 0 1 5 0 - 5 0 2 0 0 6 5 5 1 G 1 2 0 5 0 0 7 5 2 5 1 7 G 1 3 5 0 3 0 0 - 5 0 3 0 0 6 5 1 0 2 G 1 4 0 1 5 0 - 5 0 2 0 0 7 5 5 1 G 1 5 0 5 0 0 - 5 0 5 5 0 7 5 1 7 0 G 1 6 5 0 1 5 0 - 5 0 2 0 0 6 5 5 1 G 1 7 0 1 0 0 0 1 5 0 2 5 3 4 G 1 8 5 0 3 0 0 - 5 0 4 0 0 6 5 1 0 2 G 1 9 1 0 0 6 0 0 - 1 0 0 6 0 0 1 3 0 2 0 4

T A B L E II H O U R L Y P O W E R D E M A N D S

H o ur M W M V ar H o ur M W M V ar 0 1. 0 0 1, 7 0 1. 7 7 4 1. 3 1 3. 0 0 2, 6 9 1. 6 1, 1 7 3. 1 0 2. 0 0 1, 8 2 8. 1 7 9 6. 8 1 4. 0 0 2, 2 2 1. 2 9 6 8. 1 0 3. 0 0 2, 1 6 5. 0 9 4 3. 5 1 5. 0 0 2, 3 9 1. 1 1, 0 4 1. 8 0 4. 0 0 2, 2 2 1. 2 9 6 8. 1 1 6. 0 0 2, 4 2 6. 2 1, 0 5 5. 8 0 5. 0 0 2, 4 6 6. 2 1, 0 7 4. 8 1 7. 0 0 2, 4 6 6. 2 1, 0 7 4. 8 0 6. 0 0 2, 2 2 1. 2 9 6 8. 1 1 8. 0 0 2, 5 4 2. 0 1, 1 0 7. 8 0 7. 0 0 2, 3 1 6. 0 1, 0 0 9. 5 1 9. 0 0 2, 6 9 1. 6 1, 1 7 3. 1 0 8. 0 0 2, 3 9 1. 1 1, 0 4 1. 8 2 0. 0 0 2, 7 7 1. 6 1, 2 0 8. 2 0 9. 0 0 2, 4 7 6. 0 1, 0 7 9. 0 2 1. 0 0 2, 6 0 1. 7 1, 1 3 3. 8 1 0. 0 0 2, 8 3 6. 9 1, 2 3 6. 3 2 2. 0 0 2, 2 6 3. 3 9 8 6. 3 1 1. 0 0 2, 9 1 2. 0 1, 2 6 9. 3 2 3. 0 0 1, 9 2 6. 4 8 3 9. 6 1 2. 0 0 2, 7 6 6. 7 1, 2 0 6. 1 2 4. 0 0 1, 5 2 5. 5 8 0 5. 2

T A B L E III F U E L C O S T C O E F FI CI E N T S O F G E N E R A T O R S

G e n a ( k g/ M W h 2 ) b ( k g/ M W h) c G 1 0. 0 0 7 0 6. 8 0 9 5 G 2 0. 0 0 5 5 4. 0 0 3 0 G 3 0. 0 0 5 5 4. 0 0 4 5 G 4 0. 0 0 2 5 0. 8 5 1 0 G 5 0. 0 0 6 0 4. 6 0 2 0 G 6 0. 0 0 5 5 4. 0 0 9 0 G 7 0. 0 0 6 5 4. 7 0 4 2 G 8 0. 0 0 7 5 5. 0 0 4 6 G 9 0. 0 0 8 5 6. 0 0 5 5 G 1 0 0. 0 0 2 0 0. 5 0 5 8 G 1 1 0. 0 0 4 5 0 1. 6 0 6 5 G 1 2 0. 0 0 2 5 0 0. 8 5 7 8 G 1 3 0. 0 0 5 0 0 1. 8 0 7 5 G 1 4 0. 0 0 4 5 0 1. 6 0 8 5 G 1 5 0. 0 0 6 5 0 4. 7 0 8 0 G 1 6 0. 0 0 4 5 0 1. 4 0 9 0 G 1 7 0. 0 0 2 5 0 0. 8 5 1 0 G 1 8 0. 0 0 4 5 0 1. 6 0 2 5 G 1 9 0. 0 0 8 0 0 5. 5 0 9 0

T A B L E I V E MI S SI O N C O E F FI CI E N T S O F G E N E R A T O R S

G e n ( $/ M W h2 ) ( $/ M W h) G 1 0. 0 1 8 - 1. 8 1 2 4. 3 0 G 2 0. 0 3 3 - 2. 5 0 2 7. 0 2 G 3 0. 0 3 3 - 2. 5 0 2 7. 0 2 G 4 0. 0 1 4 - 1. 3 0 2 2. 0 7 G 5 0. 0 1 8 - 1. 8 1 2 4. 3 0 G 6 0. 0 3 3 - 2. 5 0 2 7. 0 2 G 7 0. 0 1 3 - 1. 3 6 2 3. 0 4

G 8 0. 0 3 6 - 3. 0 0 2 9. 0 3 G 9 0. 0 4 0 - 3. 2 0 2 7. 0 5 G 1 0 0. 0 1 4 - 1. 3 0 2 2. 0 7 G 1 1 0. 0 1 4 - 1. 2 5 2 3. 0 1 G 1 2 0. 0 1 2 - 1. 2 7 2 1. 0 9 G 1 3 0. 0 1 8 - 1. 8 1 2 4. 3 0 G 1 4 0. 0 1 4 - 1. 2 0 2 3. 0 6 G 1 5 0. 0 3 6 - 3. 0 0 2 9. 0 0 G 1 6 0. 0 1 4 - 1. 2 5 2 3. 0 1 G 1 7 0. 0 1 4 - 1. 3 0 2 2. 0 7 G 1 8 0. 0 1 8 - 1. 8 1 2 4. 3 0 G 1 9 0. 0 4 0 - 3. 0 0 2 7. 0 1

E. P r o c e d u r es of Si m ul ati o n s

I n t h es e st u di e s, t h e pr o bl e m is si m ul at e d u si n g h o url y d e m a n d s a s list e d i n T a bl e II a n d it is c o n diti o n e d usi n g li mit ati o n s i n T a bl e I. I n d et ail, t h es e w or ks ar e al s o si m ul at e d u si n g 1 0 % of t h e l o ss li mit, 0. 5 of t h e w ei g hti n g f a ct or, a n d 0. 8 5 k g/ h of t h e e mis si o n st a n d ar d. M or e o v er, t h e f u n cti o n pr o bl e m is als o c o n diti o n e d b y ot h er o p er ati o n al c o nstr ai nts as pr es e nt e d i n E q u ati o n s ( 5) t o ( 1 1) i n or d er t o s e ar c h t h e s ol uti o n i n s uit a bl e o p er ati o n al r a n g es as d esir e d i n ± 5 % of v olt a g e vi ol ati o n s, 9 5 % of t h e p o w er tr a nsf er c a p a bilit y, b a n d e d o n u p p er a n d l o w er p o w er li mits i n cl u d e d r a m p li mits f or t h e i n cr e asi n g a n d d e cr e asi n g p o w er s.

Fi g. 2. S e q u e n ci n g or d er of T A

R ef er t o Fi g ur e 1, T A is e x e c ut e d usi n g s e v er al pr o gr a ms c o v er e d i n t h e m ai n pr o gr a m, e v al u at e pr o gr a m, cl o u d c h ar g e pr o gr a m, str e a m er pr o gr a m, a v al a n c h e pr o gr a m a n d d e a d tr a c k pr o gr a m. T h e pr o gr a ms ar e d e v el o p e d t o c o v er s e q u e n ci n g pr o c ess es of T A. T h es e pr o c e d ur es ar e c o n d u ct e d t o t h e Fi g ur e 2 f or e x pr essi n g t h e m e c h a nis m t o s e ar c h t h e o pti m al s ol uti o n as d et ail e d i n p s e u d o- c o d es. T h es e pr o gr a ms ar e r u n i n 1 of t h e a v al a n c h e, 5 0 of t h e cl o u d c h ar g e, 1 0 0 of t h e str e a mi n g fl o ws, 4 of t h e h a z ar d o u s f a ct or, a n d 2 0 0 of t h e cl o u d si z e.

1 8 2 8

Page 6: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

III. RESULTS AND DISCUSSIONS The simulation results are given in several performances

to show algorithm’s abilities for solving the DOP as presented in the DED with considering operational constraints to schedule committed power outputs of generating units associated with DFC and DPP aspects. According to designed programs for 24 hours, results are presented respectively in several indicators as illustrated in following figures and tables for the computation abilities and the dynamic operations. Table V shows computational performances for determining optimal solutions within 24 hours for each individual power demand obtained in different iterations as streaming flows (Str) with captived characteristics as illustrated in Figure 3. On the other hand, the optimal solution comes from various striking points (Sp) for each hour.

TABLE V COMPUTATIONAL PERFORMANCES

Hour Str Sp Time (s) Hour Str Sp Time

(s) 01.00 20 3 2.5 13.00 15 1 1.7 02.00 19 1 2.2 14.00 17 3 2.0 03.00 19 3 1.9 15.00 19 1 2.5 04.00 20 3 3.0 16.00 20 1 2.4 05.00 6 1 2.0 17.00 29 1 1.8 06.00 16 4 1.9 18.00 30 1 2.0 07.00 11 3 2.0 19.00 31 2 1.7 08.00 11 4 1.8 20.00 16 2 2.2 09.00 6 2 2.0 21.00 22 4 3.5 10.00 8 2 2.0 22.00 18 1 3.2 11.00 15 1 1.8 23.00 24 3 2.4 12.00 15 3 2.1 24.00 15 2 3.8

Str: streaming flow, Sp: striking point

Fig. 3 Convergence speeds of the 8th and 14th hours

TABLE VI

EMISSION PRODUCTIONS

Hour PP AD Hour PP AD 01.00 2,888.7 1,597.0 13.00 10,190.4 2,393.8 02.00 1,796.8 1,644.7 14.00 3,609.2 2,017.7 03.00 6,228.7 1,966.5 15.00 5,573.3 2,141.6 04.00 6,136.6 1,972.0 16.00 5,812.9 2,156.2 05.00 7,824.2 2,281.4 17.00 8,162.2 2,256.2 06.00 4,252.6 2,075.0 18.00 5,536.6 2,263.3 07.00 4,022.1 2,091.5 19.00 8,136.1 2,473.3 08.00 6,872.7 2,209.6 20.00 9,473.0 2,547.6 09.00 6,054.1 2,213.9 21.00 6,820.2 2,362.7 10.00 14,830.4 2,635.6 22.00 4,279.5 2,021.3

11.00 10,449.2 2,609.1 23.00 3,048.5 1,759.9 12.00 14,089.4 2,582.0 24.00 1,531.0 1,430.4

PP: Pollutant Production, AD: Allowed Discharge

Captured within 100 streaming flows at 08:00 and 14:00, the running outs are given in Figure 3 as the convergence speeds for determining the optimal solution in smooth and fast as detailed in Table V for all streaming flows. By considering 24 hours, Table V also provides time consumptions for searching the optimal solution. In particular, hourly pollutant penetrations are given in Table VI covered in the pollutant production (PP) and the allowed discharge (AD). According to this table, it is known that all of the operation for 24 hours, power plants produce higher emissions over the standard. The illustration for this penetration is performed in Figure 4 associated with the OREC at 23.00 and 24.00, as the samples for all period time operation included the dominant penalty factor (dh).

Fig.4 OREC and dh of the 23rd and 24th hours

TABLE VII

OPERATIONAL PERFORMANCES

Hour Load (MW)

Gen. (MW)

Loss (MW)

Fuel costs ($)

Emi. costs ($)

01.00 1,701.7 1,878.9 177.2 9,290.6 1,384.6 02.00 1,828.1 1,934.9 106.8 8,120.3 333.8 03.00 2,165.0 2,313.5 148.5 11,915.8 3,550.6 04.00 2,221.2 2,320.0 98.8 11,427.3 3,397.1 05.00 2,466.2 2,684.0 217.8 12,725.2 4,254.4 06.00 2,221.2 2,441.1 219.9 11,170.8 1,885.7 07.00 2,316.0 2,460.5 144.5 11,690.2 1,705.6 08.00 2,391.1 2,599.5 208.4 11,914.9 3,719.6 09.00 2,476.0 2,604.6 128.6 11,803.0 3,086.1 10.00 2,836.9 3,100.7 263.8 16,005.9 8,994.8 11.00 2,912.0 3,069.5 157.5 15,081.4 5,789.6 12.00 2,766.7 3,037.7 271.0 15,856.1 8,539.6 13.00 2,691.6 2,816.3 124.7 14,832.5 5,891.3 14.00 2,221.2 2,373.8 152.6 10,695.6 1,425.2 15.00 2,391.1 2,519.6 128.5 11,447.1 2,828.8 16.00 2,426.2 2,536.7 110.5 11,805.7 2,941.7 17.00 2,466.2 2,654.3 188.1 13,416.1 4,495.5 18.00 2,542.0 2,662.7 120.7 12,833.4 2,600.4 19.00 2,691.6 2,909.8 218.2 13,639.6 4,310.2 20.00 2,771.6 2,997.2 225.6 14,916.6 5,171.4 21.00 2,601.7 2,779.7 178.0 12,788.3 3,471.7 22.00 2,263.3 2,377.9 114.6 11,672.4 1,884.9 23.00 1,926.4 2,070.4 144.0 9,604.0 1,327.9 24.00 1,525.5 1,682.8 157.3 7,217.8 243.2

1829

Page 7: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

Technically, generated power operations are listed in Table VII for describing operational performances on the optimal solutions considered the pollutant penetration at each generating units. These results show that the balance of power productions and demands covers the power loss for 24 hours. In detail, this table also provides operating costs of fuel consumptions for integrating all power plants. The pollutant penetration during the power production process is also listed in this table as the financial compensation for the environmental protection for each hour.

Fig. 5 Hourly power productions

Fig. 6 Power outputs at the 19th and 11th time

Fig. 7 Hourly progressing operations

In particular, hourly total power outputs of generations are

given in Figure 5 for the balance of the total power usages and the power serves with the power production is higher than the power demand. From this figure, it is illustrated that the generation system must cover the total power loss at the network during supplying the total load, which is depicted in Figure 7 for the fluctuated total power loss. Furthermore, the individual contribution of the power output is illustrated in Figure 6 for 19 power plants selected at 19.00 and 11.00 for describing the peak conditions. These productions are also performed in Figure 7 for the hourly progressing operations of the total power productions. From this figure, it is known

that both power outputs and the loss are fluctuated following ramp limits and the total loss requirement. This figure also informs, the produced power changed of the committed power generation is changed from the present hour to the next hour with different capacity for the decreasing or increasing power production.

IV. CONCLUSIONS This paper presents new methods for measuring pollutant

penetrations covered in dominated producers throughout the OREC technique and the dominant penalty factor. This paper also explores thunderstorm algorithm to solve the DOP considered the DED problem and various technical constraints. Results show that pollutant productions penetrate dynamically to the power productions for 24 hours. These penetrations also affect to the emission compensations as the environmental fee included in the operating cost together with the fuel cost. From these works, the real implementation to the large system is devoted to the future studies with various parameter combinations.

REFERENCES [1] Yunzhi Cheng, Weiping Xiao, Wei-Jen Lee and Ming Yang, “A new

approach for emissions and security constrained economic dispatch,” in Proc. NAPS IEEE Conference, 2009, pp. 1-5, Starkville, USA.

[2] R. Gopalakrishnan, A. Krishnan, “A novel combined economic and emission dispatch problem solving technique using non-dominated ranked genetic algorithm,” European Journal of Scientific Research, vol. 64, no. 1, pp. 141-151, Nov. 2011.

[3] Mukesh Garg, Surender Kumar, “A survey on environmental economic load dispatch using lagrange multiplier method,” International Journal of Electronics & Communication Technology, vol. 3, no. 1, pp. 43-46, March 2012.

[4] M.A. Abido, “A survey on environmental economic load dispatch using lagrange multiplier method,” International Journal of Electronics & Communication Technology, vol. 18, no. 4, pp. 1529-1539, March 2003.

[5] A.N. Afandi, “Optimal scheduling power generations using HSABC algorithm considered a new penalty factor approach,” in Proc. IEEE Conference on Power Engineering and Renewable Energy, 2014, pp. 13-18, Bali, Indonesia.

[6] A.N. Afandi, Irham Fadlika, Andoko, “Comparing performances of evolutionary algorithms on the emission dispatch and economic dispatch problem”, Telkomnika, vol 13, no 4, pp. 1187-1193, December 2015.

[7] Devendra Bisen, Hari Mohan Dubey, “Dynamic economic load dispatch with emission and loss using GAMS,” International Journal of Engineering Research & Technology, vol. 1, no. 3, pp. 1-7, May 2012.

[8] Kamran Hafeez, M.A.U Khan, “Application of geographic information system for the installation of surge arrestors on over head 132 k-v power line”, International Journal on Advanced Science Engineering Information Technology, vol. 2(6), pp. 6-8, 2016

[9] Mohd Khairuzzaman Mohd Zamani, Ismail Musirin, Saiful Izwan Suliman, Muhammad Murtadha Othman, Mohd Fadhil Mohd Kamal, “Multi-area economic dispatch performance using swarm intelligence technique considering voltage stability”, International Journal on Advanced Science Engineering Information Technology, vol. 7(1), pp. 1-7, 2017

[10] X.S. Han, H.B. Gooi, D.S. Kirschen, “Dynamic economic dispatch: Feasible and optimal solutions,” IEEE Trans. Power Systems, vol. 16, no. 1, pp. 22-28, Feb. 2001.

[11] R.H. Liang, “A neural based redispatch approach to dynamic generation allocation,” IEEE Trans. Power Systems, vol. 14, no. 4, pp. 1388-1393, Nov. 1999.

[12] A.N. Afandi, “Optimal solution of the EPED problem considering space areas of HSABC on the power system operation,” International Journal of Engineering and Technology, vol. 7, no. 5, pp. 1824-1830, May 2015.

1830

Page 8: Afandi, A. N.; Sulistyorini, Yunis; EL-Shimy, M.; Gao, X ... · The Penetration of Pollutant Productions on Dynamic Generated Power Operations Optimized Using a Novel Evolutionary

[13] A. Eskandari, M. Jahangiri, M. Anbia, “Effect of particle size of NaX zeolite on adsorption of CO2/CH4, ” International Journal of Engineering, vol. 29, no. 1, pp. 1-7, Jan. 2016.

[14] K. Sathish Kumar, V. Tamilselvn, N. Murali, R. Rajaram, N. Shanmuga Sundaram and T. Jayabarathi, “Economic load dispatch with emission constraints using various DPSO algorithm, ” WSEAS Transaction on Power System, vol. 9, no. 3, pp. 598-607, Sept. 2008.

[15] Nur Husna binti Azizul, Abdullah bin Mohd Zin, Elankovan Sundararajan, “The design and implementation of middleware for application development within honeybee computing environment”, International Journal on Advanced Science Engineering Information Technology, vol. 6(6), pp. 9137-945, 2016

[16] S. Kouhi, M.R. Ranjbar, M. Mohammadian, M. Khavaninzadeh, ”Economic aspect of fuel cell power as distributed generation,” International Journal of Engineering, vol. 27, no. 1, pp. 57-62, Jan. 2014.

[17] M. M. Lotfi, S. F. Ghaderi, “Short-term price-based unit commitment of hydrothermal gencos: A pre-emptive goal programming approach,” International Journal of Engineering, vol. 26, no. 9, pp. 1017-1030, Sept. 2013.

[18] P. Panciatici, M.C. Campi, S. Garatti, S.H. Low, D.K. Molzahn, A.X. Sun, L. Whenkel, “Advanced optimization methods for power systems,” in Proc. Power System Computation Conference, 2014, pp. 1-18, Wroclow, Poland.

[19] Bommirani B., Thenmalar K., “Optimization technique for the economic dispatch in power system operation,” International Journal of Computer and Information Technology, vol. 2, no. 1, pp. 158-168, Jan. 2013.

[20] A.N. Afandi, Hajime Miyauchi, “Improved artificial bee colony algorithm considering harvest season for computing economic dispatch on power system,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 9, no. 3, pp. 251-257, Apr. 2014.

[21] T. Taleshian, A. Ranjbar, R. Ghaderi, “Using modified IDPSO-SQP algorithm to solve nonlinear time optimal bang-bang control problem,” International Journal of Engineering, vol. 26, no. 11, pp. 1307-1322, Nov. 2013.

[22] S. Deepa, S. Rajesh Babu, M. Ranjani, “A robust STATCOM controller using particle swarm optimization,” International Journal of Engineering, vol. 27, no. 5, pp. 731-738, May 2014.

[23] T. J. Lang, S. A. Rutledge, and K. C. Wiens, “Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system,” Geophys. Res. Lett., vol. 31, no. 10, May 2004.

[24] L. D. Carey, S. A. Rutledge, and W. A. Petersen, “The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous united states from 1989 to 1998,” Mon. Wea. Rev., vol. 131, pp. 1211–1228, July 2003.

[25] C.P.R Suanders, H. Bax-Norman, E.E. Ávila, and N.E. Castellano, “A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification,” Q. J. R. Meteorol. Soc., vol. 130, pp. 1395–1406, Apr. 2004.

[26] A.N. Afandi, “Thunderstorm algorithm for assessing thermal power plants of the integrated power system operation with an environmental requirement, ” International Journal of Engineering and Technology, vol. 8, no. 2, pp. 1102-1111, Apr. 2016.

[27] A.N. Afandi, Hajime Miyauchi, “Solving combined economic and emission dispatch using harvest season artificial bee colony algorithm considering food source placements and modified rates”, International Journal on Electrical Engineering and Informatics, vol. 6, no. 2, pp. 266-279, June 2014.

1831