aes computational hydraulics for civil engineers

Upload: leandromituni

Post on 02-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    1/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    2/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    3/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    4/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    5/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    6/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    7/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    8/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    9/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    10/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    11/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    12/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    13/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    14/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    15/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    16/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    17/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    18/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    19/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    20/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    21/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    22/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    23/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    24/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    25/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    26/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    27/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    28/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    29/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    30/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    31/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    32/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    33/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    34/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    35/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    36/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    37/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    38/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    39/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    40/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    41/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    42/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    43/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    44/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    45/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    46/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    47/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    48/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    49/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    50/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    51/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    52/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    53/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    54/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    55/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    56/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    57/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    58/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    59/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    60/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    61/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    62/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    63/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    64/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    65/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    66/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    67/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    68/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    69/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    70/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    71/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    72/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    73/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    74/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    75/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    76/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    77/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    78/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    79/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    80/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    81/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    82/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    83/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    84/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    85/142

    74

    HYDRAULIC ELEMENTS

    5X,'UPSTREAM PIPEFLOW. SUGGEST USiR as-EXAMINE ASSUMED',/,SX,'PIPEFLOW FLOWOEPTBS FOR POSSIBLE CRITICAL DEPTH OR , / ,5X,'SOPPIT CONTROL IN UPSTREAM PIPS, OR PRESSURE',I,SX,'PLOW POR BOTH DOWNSTRE M D UPSTREAM PIPEFLOW.')GOTe 3000

    C OPEN-CHANNBL PLOWCC DOWNSTRE M FLew IS SUBCRITICAL OR CONTROL EXCEEDS CRITICAL DEPTH,CC [KONTROL-ll-> DOWNSTRE M CONTROL; LET DEPTH2-DEPTHZ,FOR DEPTH2}YYC(21210 CONTINUE

    IP(DEPTB2.LT.YYC(2GOTe 250l{ONTROL-lIP(DEPTHl.LT.YYC(lGOTO 230

    C CHECK FOR W SHOUT DUB TO LATERALS OR DELZ-DBCPWRITE (NT, 6WRITE (lI r, 99l)

    991 FOllllAT( SX, 'CIIECK FOR JUNCTION WASHOUT DUB T LATeRALS OR .C 'JUNCTION DROP,')

    WRr' ' (NT, 979WRITE (lI r, 980)CALL PPM(DELZ,DEPTBl,DEPTB2,R,OO,YYC,YYH,ANGLE,PL,TEST,NT)IF (TESi'.Li' 01)GO TO 992WRITE(tlT,6JWRITE (lI r,993)

    993 FOllllAT(5X,'*JUNCTION DROP IN ELEVAi'ION OR LATERAL PRESSURE-',C 'PLUS-MOMENTUM',I,5X,'CAUSES UPSTREAM PLOWS TO DOKINATEC'HYDRAULICS.',1,5X,'SUGGEST REANALYZB JUNCi'ION FOR HYDRAULICC 'COll'rROL. ' J

    GCTO 3000992 WRITE(NT,911J971 FORMAT(SX,'*DCWNSTREAK PIPEFLOW DEFTB IS ASSUKED AS HYDRAULIC

    C I CONTROL' )GCTO 300

    C CHECK FOR JUNCTION W SHOUT230 WRITE (NT,5J

    WRI'rE (lI r, 979)WRITE(NT,980)CALL FPM(DELZ,DEPTS1,DEPTH2,R,QQ,YYC,YYN,ANGLE,FL,TESi',NT)WRITE (N'1',972)

    97Z F O R M A T ( S X , U P S 1 R E ~PIPEFLOW IS SUPERCRITICAL, ND DOWNSTREAM',C J,SX,'PIPEFLOW IS SOBCRITICAL OR UNDER PRESSURE,')IF (TEST.LT.O.)WRITE (Ni', 973)

    973 FORM T (SX, "DOWNS'l'REAM FLOW DOMINAfES JUNCTION HYDRAULICS',C /,SX, SYDRAULIC JUMP MUST OCCUR UPSTREAM OF JUNCi'ION.')

    IF(TESi'.Li'.O.)GOTO 300WRIT (NT, 974 J

    974 FORMAT(5X,"UPSi'REAM FLOW DOMINATES JUNCTION HYDRAULICS')C [KONTRaL-51-> UPSTREAM FLOW IS SUPERCRITICAL ND W SHOUT OCCURS

    KONTROL-5

    UPSTREAM FLOW IS SUBCRITICAL;LET DEPTB2-YY

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    86/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    87/142

    76

    HYDRAULIC ELEMENTS

    C >UPSTREAM CONTROL

    410 SIGN-I.DTOpnc (2)DLOWO.GaTO 45

    c BEGIN DEPTH-DETERMINATIONC:420

    450

    DOWNSTRE M CONTROL:DTOP2.*RII)*.995DLOWnC(I)DG-. 5* (DTCP+DLOW)

    WRITE(NT,S)WRITE (NT, 979)WRITE(NT,980)WRITE (NT, 6)IF(SIGN.LT.O.)GOTO 500

    C. DOlrnSTREAM CONTROL.DO 475 J - l , l lCALL FPM(DELZ.DG.DEPTH2,R,CO,YYC,YYN,ANGLB,FL,TBST,NT)IF(TEST)460,2000,470

    460 DLOW-CG

    GOTO 475470 DTOP-DG475 DG-.5*(DLOW+DTOP)

    GOTO 2000C: UPSTREAM CONTROL.500 DO 525 J - l ,13

    CALL FPM(DELZ,DBPTHI,DG,R,QQ,YYC,YYN,ANGLE,FL,TEST,NT)IF (TEST) 510,2000,520

    510 DLOW-DGGOTO 525

    520 DTOP-DG525 DG-.5*(DLOW+DTOP)2000 CONTINOE

    C OUTPUT RBSULTS

    21012102

    2100C

    C3000C187C

    CC

    WRITE (NT,5)IF (KONTROL.LT.3)WRITE(NT.2101)IF (KONTROL.EO.3)WRITB(NT.2102)IF (KONTROL.EO.4)WRITE(NT.2101)IFIKONTROL.EO.5)WRITE{NT,2102)FORMAT(SX, DOWNSTREAM CONTROLASSUMED AT JUNCTION )FORMAT(5X, UPSTREAM CONTROL ASSUMED AT JUNCTION )WRITE (NT,6)IF {KONTROL.EQ.l.OR.KONTROL.EC.5)WRITE(NT.2100)DEPTHl,DGIF (KONTROL.NE.J.ANO.KONTROL.NE.5)WRITE(NT,2100)DG,DEPTH2FORMAT(5X, COMPUTBD UPSTREAM PIPEFLOW DEPTa(F T) _ , F 6 . 3 , / ,5X, COMPUTED DOWNSTRE M PIPBFLOW DEPTH(F T) ,F6 .3)

    CONTINUE

    FORMAT(16 ( * ) )

    RETURNEND

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    88/142

    HYDRAULIC ELEMENTS

    c ---------------------------------------------------------------------SUBROUTINE FPM(2,D1,D2,R,Q,YYC, YN,ANGLE,FL,TEST,NT)

    c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -C SUBROUTINE DETERMINES, {TEST] - (FPM(IN)-FPM(OUTllc

    DIMENSION R(4),Q(4),YIC(4),YYN(4),ANGLE(41,FL(41

    DELTA(YY,RR)-ACOSRR-YI1/RRlAREA(YY,RRI-RR*RR*(ANG-.S*SIN(2.*ANG))AJ-1.M - I .CJ-O.DC-a.ANG-CELTA D1 ,R I IF-J .1415926/180.AI-AREA(D1,R(I))AZ-R 2)*RI2)*3.141593XI-Z. *R 21IF(DZ.GE.Xl)GOTO JANG-DELTA(D2,R(ZIIA2-AREA(D2,R(2)I

    l T-.5*(D1+D2+FL(1)+FL(2))IF Q 3).LT 01)GOTO 20

    c-------LATERAL. LINE.3ANG-DELTA(YYN(3),R(3Al-AREA(YYN(3),R(3D3-YIN(3)IF(YIC(3).GE.YYN(JGOTO 20

    C . MILD FLOWXoT-FL(J)IF(YYC(3).GE.X)GOTO 5A3-R 3)*R 3)*3.141S93Xl-R 3) *2.IF(X.LT.X1)GOTO 10OJ-XlIF X.GT.xIIDJ-XIF(D3.GE.xl)GOTO 20

    5 ANG-DELTA(YYc(3),R(3)A3=AREA(YYC(J),R(lllD3-YYC(3)

    OTO 2010 ANG-DELTA(X,R(l))AJ-AREA(X,R(l))DJ-X

    C-------LATERAL. LINE.420 IF{O 4).LT 00I)COTO 50

    ANG-DELTA( YN(4),R(4"A4-AREA(YYN(4),R(C)1D4-YIN(4)IF(YYC(4).CE. YN(4)IGOTO 40

    c: MILD FLOwX-T-Ft 4)IF(YYC(4) .CE.XIGOTO 25A4=R(C)*R(4)*3.141593X1=R(4)*Z.IF(X.LT.XIIGOTO 30D4-XIIF(X.GT.Xl)D4-XIF(D4.GE.XIIGOTO 40

    77

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    89/142

    78

    HYDRAULI C ELEMENTS

    25 ANG-OELTA(YfC(4"R(4"A4-AREA[ YC(4),R(4D4-ryC(4)GOTO 4

    30 ANG-DELTA(X,R(4U-AREA(X,R[4D 4 1

    40 CONTINUE50 TEST-(Z+DI-D2)"(Al+A2)"16.1-Q(2)"Q(2)/A2+Q(1)*Q[1)"COS(ANGLE(l)"

    C F)/Al+Q[J) Q[3) COS (ANGLE [J) P)/A3+Q(4, "Q(4)COS(ANGL (4) "P l/A4WRITE(NT,lOO)Dl,D2,D3,04,TEST

    100 PORKAT(10X,4PIO.3,Pll.O)

    RETURNEND

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    90/142

    HYDRAULIC ELEMENTS

    PROGR M D T ENTRY

    ---OATA ENTRY FOR GRADUALLY VARIED FlOW WATER S U R F ~ C O E T e R ~ l N A T I O NFOR CONSTANT SLOPE RECT/TRAP/V-SHAPED OR PIPE---PAGE 1

    E n t ~ rconsUnt channeL sloge SO; A L ~ O ~ A e l eVALUES ARE t .00001) TO (.Q9 J

    Ent 'r length CFEET) 01 channel with CQnsUnt sLoge W > XL:ALLO.ABLE VALUES ARE Cll TO Cl00000l

    Enter constant cnannel ftow CFS) :sa> 1;.:ALLO.ABLE VALUES ARE C.Ol l TO Cl000000 J

    Enter channeL fr1etion factorCMannings) :=*> RN:ALLO.ABLE VALUES ARE C 008 ] TO C 9999 l

    Enter ,h.nneL control-depthCFEET) 2 . )(NOTE: IF COl IS ENTERED. CRITICAL DEPTH IS ASSU ED

    AS CONTROL:ALlO.ABLE VALUES ARE COl TO Cl00D l

    TYPE: EXIT to leave progra_ ; TOP to go to top of pageMAIN to go t o maln .enu

    YcaNT

    ---DATA ENTRY FOR GRADUALLY VARIED FLOW WATER SURFACE D E T E R ~ I N A T I O NFOR CONSTANT SLOPE RECTANGULAR CHANNEL---PAGE 2

    Enter . a x 1 m u ~nuaber o f i t . ~ v . l sta oeuSl d in ~ r o f i l e a._> NNALLOWABLE VALUES ARE C10 l TO (1COO 1

    Ent , h n n o t b dth(FEET) _ > 8:ALLO.ABLE VALUES ARE COl TO Cl0DD l

    TYPE: EXlT to leave progrilll ; TOP to go t o top o f pageSACK to go back one page

    79

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    91/142

    80

    HYDRAULIC ELEMENTS

    ~ A T AENTRY fOR ADUALLY VARIED fl.OW WATE. SURFACE D E T E R ~ I N A T I O NfOR CONSTANT S I O P ~TRAPfZOIOAI HANNEL--PAGE Z

    Entfr m mum number of t n t ~ r V l l lto b.used in pro1 i {e > NN:.ALLOWABLE VALUES U C10 l TO (1000 l

    Enter , h . n n e l ~ a s e ' l l i d t n ( F E E T ) ,. ''''> " I ":AL.L.OWASL.E VAL.UES UE CO] TO (1000 ]

    Enter chinnel Z v . lu ===> "t"(NOTE: Z QUOTIENT OJ: (HOIllZONTAL)/ (VERTICAL>':AL.L.OWASL.E VAL.UES UE [0] TO [100 J

    TYPE; EXIT to lu 'V. progr ; TOP t o go to top of pol;.; lACK to go blek one page

    ---oATA ENTRT FOI GRADUALLY VARIED FLOW WATER S U ~ F ~ C EOETERMINATIOHFOR CONSTA.T SL.OPE (Vl -SHAPED C H ~ E L P A G EZ

    Enter maximum number of i ~ t e r v i l sto beused in pr o f i le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : Os> NH:'L.LOWASL.E VAL.UES ARE [10 J TO [ICeO J

    Entel cn.nn_l % v.lue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . o . o . o ===> ..z .(NOrE: QUOTIENT 0 (HCRIlONTALJ/(VERTICALll: A L ~ O W A e LVALUES ARE (0] TO [100 ]

    TYPE: EXIT to leave prograla ; TOP ta gg to tcp of page; SAC)( to 90 b a ~ kone p ~ g .

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    92/142

    HYDRAULIC ELEMENTS

    PROGRAM 6

    C SUBROUTINE GVF(KTYPElC

    C ANALYSIS OF GRADUALLY VARIED FLOW W TERC SURFACE DETERMINATION

    NT NUTC

    COMIION /NOT/NOT

    C INITIALIZE REQUIRED INPUT VARIABLESZ-O.O

    CC

    B .OOl0 0 . 05 0 0 .0XL-O.RN O.

    YCONT-O.NN ODlAM O.

    C READ DATA INPUTREAD FREE 5lS0,XL,O,RN,YCONT,NN,DIAM,B,Z

    IF KTYPE.NE.B)GO TO 151CALL GVFPI NT,DIAM,SO,O,XL,RN,YCONT,NN)GO TO 153

    151 CALL GVFCH NT,Z,B,SO,O,XL,RN,YCONT,NN)153 CONTINUECC

    RETURNEND

    81

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    93/142

    82

    HYDRAULIC ELEMENTS

    c ---------------------------------------------------------------------SUBROUTINE GVFCB(NT,Z,B,SO,Q,XL,RN,YXNT,NN}c ---------------------------------------------------------------------CC ANALYSIS OP GRADUALLY VARIED PLOW W A ~ E RC SURFACE DETERMINATION

    C C O K K O N / N U ~ P / N U T P , I S V

    C FUNCTION O ~ P I N I T I O N SAREA(YY)-YY*(B+Z*YY)PER(YY)-B+2.*YY*SQRT(1.+Z*Z)YCTP(YY)-1.-o*Q*(B+2.*Z*YY)/(o*AREA(YY) **3.)YNMP(YY)-I.-o*Q*CON/(AREA(YY)**l.llll/PER(YY)**1.l333)DL(YY)-YCTP(YY)/(YNMF(YY)*SO)FPM(YY)-GAM*(YY*YY*(S*.5+Z*YY/3.)+Q*Q/(o*AREA(YY)ENEROY(YY)-YY+Q*Q/(2.*G*ARSA(YY) **2.)

    IF(B.LE.O.)S-.OOOlCC------CONSTANTS

    GAM-02.4G - n . lCON-(RNll.486)**2./SOW R I ~ E(NT, 187

    5 FORMAT(15( - WRITE (NT,200)

    200 FORMAT(5X, GRADOALLY VARIED FLOW PROFILE INPUT I N F O R M A ~ I O N I )WRITE (NT,5)W R I ~ E ( N T , 2 0 2 ) S D , X L , Q , R N , Y X N T , N N , B , Z

    202 FORMAT(5X, CONSTANT CHANNEL SLOPE(FEET/FEET) ,F8.6,I,C 5X, CHANNEL L E N G T H ( F E E ~ )- , r12.2,I ,C SX, CONSTANT CHANNEL FLOW(CPS) , 1 1 2 . 2 , / ,C 5X, CONSTANT CBANNEL FRICTION FACTOR(MANNING) ,F8.6,1,C 5X, ASSUMED CHANNEL C O N ~ R O LDEPTH(FEET) , F 8 . 2 , I ,C 5X, MAXIMUM NUMBER OF INTERVALS IN PROFILE ,16,1,C S X , C O N S ~ A N TCHANNEL SASEWIDTB(PEET) - ,FI0.2,I,C 5 X , C O N S ~ A N TCBANNEL Z FACTOR - ,F10.4)

    C-----------------------------------------------------------C PROFILE DETERMINATIONNN-NN 2UPIT-5000.DOWN-O.YC-IOOD.DO 520 1-1 ,22IF(CTF(YC514,521.515

    514 DOWN-YCGCTO 520

    515 UPIT-YC520 YC-(UPIT+OOWN) *.5521 I F ( Y ~ N T . E Q . O . ) Y K N ~ ~ Y C

    U P I ~ ~ 5 0 0 0 .

    DOWN-O.YN-IOOO.DO 530 1 - 1 2 2IF(YNMF(YN523.531.524

    523 OOWN YNGOTO 530

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    94/142

    HYDRAULIC ELEMENTS

    524 U P I T ~ , { I53 YNo(UPIT+OOWN) * ,5531 CONTINUE

    ~ I T E { N T , 5 3 3 ) Y N , Y C

    533 FORMAT(5X, NORMAL OEPTH{FEET) 0 , P 9 . 2 , / ,C 5X,'CRITICAL OEPTH(PEET) - ,F9 ,2 )

    535 IF(YN,LE,YC)GOTO 550C

    CIF(YKNT.LT.YC)GOTO 545

    SIGN--l.DYo(YKNT-YN).99S/NNI

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    95/142

    84

    C

    HYDRAULIC ELEMENTS

    DX_DY*(DL(Y)+DL(Y2)+4.*DL(YINT+SIGN*I*DY/3.SL-SL+DXIP(SL.GT.XL)GOTO 582Y-Y2E-ENERGY(Y)FH-PI H(Y)IP(I.EQ.NN-l.AND.SL.LT.O.)SL-XL

    1580 VV-SQRTE-Y)*64.36)580 WRITE(NT,564)SL,Y,VV,E,FH

    CC

    GOTO 1000

    582 Y-Y2-SIGNZ.DY*(SL-XL)/DXE-ENERGY(Y)FH-FPII(Y)VV-SQRTE-Y)64.36)WRITE(NT.564)XL.Y,VV,E.PIIGCTO 1600

    1500 CONTINUEWRITE (NT,1505)

    1505 FORMAT(/lX, WARNING. PROFILE DEPTB INCREIIENT IS . TOO SHALL. , j ,

    C6X, REATTEIIPT PROBLEII WITB A SLIGHTLY DIFFERENT CONTROL DEPTH ,j,C 6X. OR A FEWER NUIIBER OF PROFILE INTERVALS. )1600 CONTINUE1000 CONTINUE

    C FORMATSC180 FORMAT(76( )187 FORMAT(76( )C

    RETURNEND

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    96/142

    HYDRAULIC ELEMENTS

    PROGR M : D T ENTRY

    ---oATA ENTRY FOR GR OU LLY VARIED 'LOW W TER SURFACE D e T E R ~ l N A T I NFOR PIPE--f AGE Z

    Enter xieu. nunber of intervals to btu3ed ~ pr o f i le ==*> NNAll.OWASCE VACUES ARE [10 J TO [1000 J

    Enter CQnstant p i ~ diam.t.rCINCHESJ z=_>:ALLOWASLE VALUES RE [3] TO (24Q l

    TYPE; EXIT to le . . . . prag r.a ; TOP to go to top of p a ~ e; e.l.CK to go back ont pag t

    orAM

    85

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    97/142

    86

    HYDRAULIC ELEMENTS

    PROGR M 7

    C SUBROOTINB GVFPI(NT,OIAM,SO,O,XL,RN,YINT,NN)CCC ANALYSIS or GRADUALLY VARIED FLOW W TERC SURFACE DETERMINATIONC

    CC

    OELTA(YY)-ACOSR-YY) R)AREA(YY)-R*R*(ANG-.5*SIN(2.*ANGPER(YY,-2.*R*ANGTW(YY'-2.*R*SIN(ANG)YCTP(YY,-1.-o*O*TW(YY) (GOAREA(YY) **3.)YNMP(YX)-1.-o*O*CON/(AREA(yy)*o3.3333/PER(yy)*o1.3333)OL(YY)-YCTP(YY)/(YNMF(YY)*SO)FPM(YX)aCAM*(O*O/(G*AREA(YX+YBoAREA(YY)ENERGY (YX)-YY+QoO/(2.oG*AREA(YX)*2.)

    C CONSTANTSGAM-n G-32.2CON-(RN/1 86)*2./S0WRITE(NT,187)

    6 FORMAT(16('-'I)WRITE (NT,200)

    200 PORMAT(5X,'GRADOALLY VARIED FLOW PROFILE INPUT INFORMATION,')WRITE (NT.6)WRITE(NT,202)SO,XL,O,RN,YINT,NN,OIAM

    202 FORM T (5X, 'CHANNEL SLOPE(FEET/FEET) - , p8 . 6 . / ,5X,'CBANNEL LENGTB(FEET) - , F1 2 .2 .1 .

    C 5X,'CONSTANT CHANNEL FLOW(CFS) - ,F12 .2 , / ,C 5X,'CONSTANT CBANNEL FRICTION PACTOR(MANNING) - .F8.6,I ,C 5X,'ASSUMED CHANNEL CONTROL DEPTB(PEET) - ,F8.2,1.C 5X,'MAXIMOM NUMBER OF INTERVALS IN PROFILE - ,16,1,C 5X,'CONSTANT PIPE DIAMETER(INCBES) - ,Fa .3)

    C-----------------------------------------------------------C PROPILE DETERMINATIONC

    LOGIC-ONN-2*NNDIAM-DIAM/12.R-DIAN/l.DMAX-.94*DIAN

    512 UPIT-DIAKDOWH O

    YC-DMAX/2.DO 520 1-1,22ANG-DELTA (YC)IF(YCTF(YC514,521,515

    5 4 DOWN YCGOTe 520

    515 UPIT-YC520 YC-(OPIT+DOWN) *.5521 IF (YC.GT.DIAN)YC-DIAM

    IP(YKNT.EO.O.)YKNTYCTEST-.49a*DIAM*o2.6667*SO**.5/RNIF(O.LT.TEST)GOTO 522WRITE (Nt,5221)

    5221 FORMAt(5X,'-)NORMAL PIPEFLOW IS PRESSURE FLOW',

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    98/142

    YN-DIAII 2.GOTO 531

    HYDRAULIC ELEMENTS

    522 UPIT-OMAX

    523

    524530531

    533C

    5331C

    534535

    CC

    DOWN-D.YN-OMAX/2.00 530 1 - 1 , 2 2ANG-OELTA(YN)IP(YNMP(YN))523,531,524DOWN-YllGOTO 530UPIT-YNYN-(UPIT+OOWN)-.5CONTINUEDl lAX-.82*DIAM

    IP(YN.LE.DIAII)WRITE(NT,533)YN,YCPORMAT(5X. NORMAL DEPTB(PEET) , P 9 . 2 , / ,5X. 'CRITICAL DEPTII(PEETI .F9 .21IP(YN.LT.DIAII.AND.YN.GT.OMAX)WRITE(NT,5331)PORMAT(5X. NOTE.GIVEN NORM L DEPTB IS LOWER VALUE r TWO POSSIBLE,/,SX.'SUGGEST CONSIDERATION OP W VE ACTION, UNCERTAINTY, ETC. )IF (YN.GT.DIAIII WRITE (NT. 5341 YCFORMAT(5X, 'CRITICAL DEPTB(PEETI ,P9 .2 )IP(YN.LE.YC)GOTO 550

    IF(YKNT.LT.YC)GOTO 545

    IP(YKNT.LT.YN)GOTO 5351IF (YN.GE.DMAXILOGIC-lIF(LOGIC.EQ.lIGOTO 2IF (YKNT.GT.DIAMIYENT-DIAMGOTO 5359

    5351 IF (YN.GE.DMAX)LOGIC-2IF(LOGIC.EQ.2)GOTO 2000

    5359 SIGN--l.DY-(YKNT-YN) .99B/NNKODE-lGOTO 560

    545 SIGN-I.C

    C

    C

    DY- (YC-YltNT) NN

    KODE-2GOTO 560

    550 IP(YKNT.LE.YC)GOTO 555C

    C

    IP(YN.GE.DMAX)LOGIC-.IP(LOGIC.EQ.4)GOTO 2000IF (YltNT.GT.DIAII)YKNT-OIAIISIGN--l.DY- (YitNT-YCl/NNKOOE-lGOTO 560

    555 SIGN-I.IF(YKNT.LT.YN)GOTO 5559IF (YN.GE.DMAX)LOGIC-S

    IF(LOGIC.EQ.51GOTO 20005559 OY-(YN-YKNTl .99B/NN11:00-2

    87

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    99/142

    88

    560

    HYDRAULIC ELEMENTS

    SL O.IF(ABS(OY).LT 0005)GOTO 1500Y-UNTANG-DBLTA(Y)E-ENERGY(Y)CALL YBAR(y,DIAR,YB,NT)

    FM-Pl M(Y)C OUTPUT

    262263C

    WRITE(NT,l80)I P ~ O D E . E Q . l I W R I T N T , 2 6 2 ) Y ~ N T

    IF(KODE.EQ.2)WRITE(NT,263)YKNTFORMAT(5X, DOWNSTREAR CONTROL ASSOMED DEPTH(PT) - , PS.2)FORMAT (5X, UPSTREAM CONTROL ASSUMED DEPTB(PT) - ,PS.2)

    WRITE (NT,180)WRITE (NT,254)

    264 FORMAT(5X, GRADOALLY VARIED PLON PROfILE COMl UTED INPORMATION, )IIIIITS(NT,6)IIIIITS (NT, 2 U )

    261 PORMAT(2X, DISTANCE PROM',6X,'PLOWDEPTB',3X,'VLOCITY',6X, 'SPECIFIC' ,8X,C PRESSORE+ ,/,3X, CONTROL(PT) ,9X, (PT) ,6X, (PT/SEC), ,

    5X, ENERGY CPT)C 4X, MOMENTOMCPOOHOS) )VV-SQRTC(E-Y)*64.J6)WRITECNT,564)SL,Y,VV,E,PM

    C-------PROPILE CALCULATION564 FORMATC2FI5.3,Pll.3,FlS.3,2X,PlS.2)

    C

    DO 58 r-I,NN,2YZ-YKNT+SIGN*OY*CI+I)ANG-DELTA (Y)TEMPI-DL(Y)ANG-DELTACY2)TEMl 2-DL(Y2)ANG-DELTACYBNT+SIGN*I*DY)TEMP3-DL(YBNT +SIGN*I*DY)DX-DY*(TEMPl+TEMl'2+4.*TEMl'3)/3.SL-SL+DXIF(SL.GT.XL)GOTO 582Y-y2ANG-DELTACY)E-ENERGYCYCALL DAR(Y,DIAM,n,NT)FM-rPMCY)IFCI.EQ.NN-I.AND.SL.LT.O.)SL-XL

    1580 VV-SQRT(E-Y)*64.36)580 WRITE(NT,564)SL,Y,VV,E,FM

    CGOTO 1000

    5S2 Y-Y2-SIGN2.*DY*CSL-XL)/DXANG-DELTACY)S-ENERGY(Y)CALL YBAR(Y,DIAM,YB,NT)FM-PPM(Y)

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    100/142

    1000

    1500

    15 5

    2000

    2005

    2100C

    HYDRAULIC ELEMENTS

    VV.SQRT( (E-lC) 54,36)WRITE(NT,564)XL,Y,VV,E,FMCONTINUBGOTO 2100CONTINUBWJtITE(NT.1505)FORKAT(/lX,WARNING,PROFILE DEPTH I N R E ~ E N TIS TOO SMALL. ,

    C/6X, REATTEMPT PROBLEM WITa A SLIGHTLY DIFFERENT CONTROL DEPTH ,I.C 6X, OR A FEWER NUMBER OF PROFILE INTERVALS, )

    OTO 2100CONTINUEWRITE(NT,6)HIUTE(NT,200S)FORHAT(5X, PLOW PROFILB OEPTBS ARB GREATBR TH N 8 2 0 I A M E ~ E R .

    C I,SX, SUGGEST CONSIDERATION or SEALED FLOW IN THIS RE CH DUE TO ,I,C 5X, W VE ACTION, UNCERTAIN1 Y, ETC, )

    CONTINUE

    C FORIIATSC180187C

    FORIIAT 76 . FOlUIAT 76 . ) )

    RETURNI lNl)

    89

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    101/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    102/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Proolem 5.1 .2 .

    Determine normal depth and c r i t i c a l depth data for a 48 inch BCPwith a s lope of 0.010 f t f t and a flow o f 100 cfs . Use aManning's f r i c t i o n fac tor o f n = 0.013. Note t h a t f low i s

    su p e rc r i t i c a l . Fr > 1) .

    CRITICAL DEPTH

    NORMAL EPTH

    4 ' R.CP. 0-0.010

    . PIPEFLOW HYDRAULIC INPUT INFORMATION

    PIPE DIAMETER FEET) = 4.000PIPE SLOPE FEET/FEET) 0100PIFEFLOW CFS) = 100.00MANNINGS FRICTION FACTOR = .013000

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL DEPTH FEET) 3.03

    CRITICAL FLOW AREA SQUARE FEET) = 10.212CRITICAL FLOW TOP-WIDTH FEET) = 3.429CRITICAL FLOW PRESSURE + MOMENTUM POUNDS) = 2765.09CRITICAL FLOW VELOCITY FEET/SEC.) 9.792CRITICAL FLOW VELOCITY HEAD FEET) = 1.49CRITICAL FLOW HYDRAULIC DEPTH FEET) = 2.98CRITICAL FLOW SPECIFIC ENBRGY FEET) 4.52

    NORMAL-DEPTH FLOW INFORMATION:

    NORM L DEPTH FEET) = 2.46FLOW AREA SQUARE FEET) = 8.09FLOW TOP WIDTH FEET) = 3.894FLOW PRESSURE + MOMENTUM POUNDS) = 2931.64FLOW VELOCITY FEET/SEC.) 12.353FLOW VELOCITY HEAD FEET) = 2.370HYDRAULIC DEPTB FEET) = 2.08FROUDE NUMBER 1.510SPECIFIC ENERGY FEET) = 4.83

    91

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    103/142

    92

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.1.3.

    Determine normal depth and crit ical depth data for a 48 inch RCPwith a slope of 0.010 f t / f t and a flow of 150 cfs using aManning s frict ion factor of n

    =0.013. Note that a circular

    conduit flowing a t a depth of 82% of the pipe diameter conveys thesame discharge as a conduit flowing fu l l . Consequently, thecomputer output suggests the designer may wish to consider theconduit flowing full .

    o

    "Eo

    'll

    d~Q

    -

    R I T f ~ LDill : :::":: ... ~NORMAL DEPTH

    4' R.C.P $0=0.010 \. )D- Depth o Flow d =Diameter of Conduit

    . . .

    PIPEFLOW HYDRAULIC INPUT INFORMATION

    PIPE DIAMETER FEET) = 4.000PIPE SLOPE(FEET/FEET) .0100PIPEFLOW CFS) = 150.00MANNINGS FRICTION FACTOR = .013000CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL DEPTH FEET) = 3.60CRITICAL FLOW AREA SQUARE FEET) = 11.901CRITICAL FLOW TOP-WIDTH FEET) = 2.412CRITICAL FLOW PRESSURE + MOMENTUM POUNDS) = 4923.58CRITICAL FLOW VELOCITY(FEET/SEC.) 12.604CRITICAL FLOW VELOCITY HEAD (FEET) 2.47CRITICAL FLOW HYDRAULIC DEPTH FEET) = 4.93CRITICAL FLOW SPECIFIC ENERGY FEET) = 6.06NOTE,GIVEN NORMAL DEPTH IS LOWER VALUE OF TWO POSSIBLE.SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC.

    ==_== _ c... = = . = = = = ~ = = = = = = = = = = = = = = : = = = = = = = = _ = = = = = = = = = = = = = = =NORMAL-DEPTH FLOW INFORMATION:

    NORMAL DEPTB FEET) = 3 . 7FLOW AREA SQUARE FEET) = 11.57FLOW TOP WIDTH(FEET) 2.722FLOW PRESSURE + MOMENTUM POUNDS) s 4932.98FLOW VELOCITY (FEET/SEC.) - 12.968FLOW VELOCITY HEAD FEET) = 2.611HYDRAULIC DEPTH FEET) = 4.25FROUDE NUMBER 1.109SPECIFIC ENERGY FEET) = 6 .08

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    104/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5 1 4

    Determine normal depth discharge of a 48 inch RCP on a s lope of0.010 f t / f t with a flow depth of 3 feet Use a Manning s f r i c t ionfac tor of n = 0 013

    . . _ _-_._-----PIPEFLOW HYDRAULIC INPUT INFORMATION

    FIFE DIAMETER FEET) = 4 000FLOWDEPT8 FEET) s 3 000PIPE SLOPE(FEET/FEET) = 0100MANNINGS FRICTION FACTOR = 013000 > NORM L DEPTH FLOW CPS) = 130 99

    NORMAL-DEFTH FLOW INFORMATION.

    NORM L DEPTH FEET) 3 00FLOW AREA SQUARE FEET) = 10 11FLOW TOP WIDTH FEET) = 3 464FLOW PRESSURE KOMENTUM POUNDS) = 4137 36FLOW VELOCITY (FEET/SEC.) = 12 956FLOW VELOCITY READ FEET) = 2 607HYDRAULIC DEPTB FEET) = 2 92FROUDE NUMBER = 1 337SPECIFIC ENERGY FEET) a 5 61

    Problem 5 1 5

    Determine the diameter of circu lar conduit required to discharge144 c f s when f lowing f u l l Assume s lope of pipe i s 0.010 f t / f tand the Manning s factor of n = 0.013

    . _ ---------- .- . . ----- . . ._.---_ . . . . . . -- . . . . . . . . - . _ _._-_.-PIPEFLOW HYDRAULIC INPUT INFORMATION

    PIPE SLOPE(FEET/FEET) = 0100PIPEFLOW CFS) = 144 00MANNINGS FRICTION FACTOR = 013000>SOFFIT-FLOW PIPE DIAMETER FEET) 4 004

    93

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    105/142

    94

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5 1 6

    Determine the slope t ha t s required for a 48-inchdiameter pipe to convey 200 cfs when t i s flowing ful l .Manning s f r ic t ion factor of n = 0.013.

    4-foot)Assume a

    . . . .

    PIPEFLOW HYDRAULIC INPUT INFORMATION

    PIPE DIAMETER FEET) = 4.000FLOWDEPTH FEET) 4.000PIPEFLOW(CFS) = 200.00MANNINGS FRICTION FACTOR = .013000>SOFFIT-FLOW PIPE SLOPE(FEET/FEET) .0194

    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~ = = == = =

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    106/142

    _ _ _ . HYDRAULIC ELEMENTS EXAMPLE PROB.:L:::E 'M 'S'-

    Problem 5.2.1.

    Determine normal depth and c r i t i c a l depth data for a concretel i ned t rapezoidal channel having a Z o f 2, a basewidth of 6 f t .longi tudinal s lope of 0.002 f t / f t and conveying s o cfs . Use aManning s f r i c t i o n fac tor of n : 0.015. Note t h a t flow i ss u b c r i t i c a l (F r < 1).

    NORMAL DEPTH

    ~ C R I T I C A LE P T H -Z 2

    I 6 1

    9S

    _._ .- _ . ____ _ _ _----._-- _ _--CHANNEL INPUT INFORMATION

    ----------------------CHANNEL Z(HORIZONTAL/VERTICAL) = 2.00BASEWIDTH(FEET) = 6.00CONSTANT CHANNEL SLOPE(FEET/FEET) .002000UNIFORM FLOW(CFS) = 500.00MANNINGS FRICTION FACTOR .0150

    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    NORMAL-DEPTH FLOW INFORMATION:

    > NORMAL DEPTH(FEET) = 4.26

    FLOW TOP.- WIDTH (FEET)=

    23.0461.83LOW AREA (SQUARE FEET) -HYDRAULIC DEPTH(FEET) = 2.68FLOW AVERAGE VELOCITY(FEET/SEC.)UNIFORM FROUDE NUMBER - .870PRESSURE + MOM NTUM (POUNDS) =AVERAGED VELOCITY HEAD(FEET)SPECIFIC ENERGY(FEET) = 5.274

    CRITICAL-DEPTH FLOW INFORMATION:

    B 09

    14444.791.015

    CRITICAL FLOW TOP-WIDTH(FEET) 21.89CRITICAL PLOW AREA (SQUARE FEET) = 55.41CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.53CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 9.02CRITICAL DEPTH(FEET) = 3.97

    CRITICALFLOW PRESSURE MOMENTUM[POUNDS) =

    14307.55AVERAGED CRITICAL FLOW VELOCITY BEAD(PEET) 1.264CRITICAL FLOW SPECIFIC ENERGY(PEET) = 5.237

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    107/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.2.2.

    Determine normal depth and c r i t i c a l depth data for a concretelined trapezoidal channel having a Z of 2, a basewidth of 6 feet ,longitudinal slope of 0.005 f t f t and conveying 500 c f s . Use aManning's f r i c t io n fac to r of n = 0.015. Note t h a t flow i ssupercr i t i ca l ( Fr > 1).

    NORMAL DEPTH :;..;;;r

    I 6 I

    ****************************************************** CHANNEL INPUT INFORKATION

    CHANNEL Z(HORIZONTAL/VERTICAL) = 2.00BASEWIDTH(FEET) = 6.00CONSTANT CHANNEL SLOPE(FEET/FEET) = .005000UNIFORM FLOW(CFS) = 500.00KANNINGS FRICTION FACTOR = .0150

    ========================================================a=c=================NORMAL-DEPTH FLOW INFORMATION:

    > NORMAL DEPTH{FEET) =FLOW TOP- WIDTH(FEET) =FLOW AREA(SQUARE FEET) =

    3 .4219 .69

    43 . 99HYDRAULIC DEPTH{FEET) = 2.23FLOW AVERAGE VELOCITY{FEET/SEC.) =UNIFORM FROUDE NUMBER = 1.340PRESSURE MOMENTUM{POUNDS) =AVERAGED VELOCITY HEAD(FEET) =SPECIFIC ENERGY(FEET) = 5.430

    11 .37

    14878.122.006

    ~ ==== ===============================CRITICAL-DEPTH FLO,I INFORMATION:

    ----------------------------------------------------------------------------CRITICAL FLOW TOP-WIDTH(FEET) = 21.89CRITICAL FLOW AREA (SQUARE FEET) = 55.41CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.53CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 9.02CRITICAL DEPTH(FEET) = 3.97CRITICAL FLOii PRESSURE MOMEN,UH (POUNDS) - 14307.55AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) 1.264CRITICAL FLOW SPECIFIC ENERGY(FEET) = 5.237

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    108/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.2.3.

    For a concrete l ined t rapezoidal channel with a flow depth of 4feet determine the discharge rate. Assume a Z of 2 a basewidthof 6 f ee t longi tudinal slope of 0.005 f t f t and a Manning s

    fr ic t ion factor of n = 0.015.

    97

    . . . .

    CHANNEL INPUT INFORMATION

    NORMAL DEPT8(FEET) = 4.00CHANNEL Z HORIZONTAL/VERTICAL) = 2.00BASEWIDTH FEET) = 6.00CONSTANT CHANNEL SLOPE(FEET/FEET) = .005000MANNINGS FRICTION FACTOR - .0150

    ============================================================================

    NORMAL-DEPTH FLOW INFORMATION.

    NORMAL DEPTH FLOW CFS) =FLOW TOP- WIDTH FEET) =

    692.2622.00

    FLOW AREA SQUARE FEET) HYDRAULIC DEPTH FEET) = 2.55FLOW AVERAGE VELOCITY(FEET/SEC.)UNIFORM FROUDE NUMBER = 1.365PRESSURE MOMENTUM POUNDS) -AVERAGED VELOCITY HEAD FEET) =SPECIFIC ENERGY FEET) = 6.373

    56. 00

    12.36

    22241.032.373

    =================================E E==S=====================================

    CRITICAL-DEPTH FLOW INFORMATION:----------------------------------------------------------------------------

    CRITICAL FLOW TOP-WIDTH(FEET) = 24.68CRITICAL LOW AREA SQUARE FEET) = 71.62CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.90CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 9.67CRITICAL DEPTH FEET) = 4.67CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 21282.92AVERAGED CRITICAL FLOW VELOCITY HEAD FEET) 1.451CRITICAL FLOW SPECIFIC ENERGY (FEET) m 6.120

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    109/142

    98

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Prd:llem 5.2.4.

    Calculate the slope required to discharge 500 c f s in a concretelined trapezoidal channel having a flow depth of 4 feet. Assume aZ of 2, a basewidth of 6 f ee t and a Manning s f r i c t io n fac tor of0.015 f t / f t

    .

    CHANNEL INPUT INFORMATION

    NORMAL DEPTH FEET) = 4.00CHANNEL Z HORIZONTAL/VERTICAL) = 2.00BASEWIDTH FEET). 6.00UNIFORM FLOW CFS) = 500.00MANNINGS FRICTION FACTOR = .0150

    D ~ D SNORMAL-DEPTH FLOW INFORMATION:

    > CHANNEL SLOPE FEET/FEET) = .00261FLOW TOP- WIDTH FEET) = 22.00FLOW AREA SQUARE FEET) - 56.00HYDRAULIC DEPTH FEET) = 2.55FLOW AVERAGE VELOCITY FEET/SEC.) = 8.93UNIFORM FROUDE NUMBER - .986PRESSURE MOMENTUM POUNDS) = 14308.88AVERAGED VELOCITY HEAD FEET) = 1.238SPECIFIC ENERGY FEET) = 5.238

    ========================================= ==================================

    CRITICAL-DEPTH FLOW INFORMATION:----------------------------------------------------------------------------

    CRITICAL FLOW TOP-WIDTH FEET) = 21.89CRITICAL FLOW AREA SQUARE FEET) = 55.41CRITICAL FLOW HYDRAULIC DEPTH FEET) = 2.53CRITICAL FLOW AVERAGE VELOCITY FEET/SEC.) 9.02CRITICAL DEPTH FEET) = 3.97CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 14307.55AVERAGED CRITICAL FLOW VELOCITY HEAD FEET) = 1.264CRITICAL FLOW SPECIFIC ENERGY FEET) = 5.237

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    110/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.2.5.

    Determine the basewidth required for a concrete t rapezoidalchannel to convey 500 cfs a t a flow depth of 4 feet. Assume the Zi s 2 the longi tud ina l slope of 0.005 f t f t and a Manning sfriction factor of n = 0.015.

    CHANNEL INPUT INFORMATION

    NORM L DEPTH(FEET) = 4.00CHANNEL Z HORIZONTAL/VERTICAL) = 2.00CONSTANT CHANNEL SLOPE(FEET/FEET) = .005000UNIFORM FLOW CFS) = 500.00MANNINGS FRICTION FACTOR = .0150

    99

    ~ ~

    NORMAL-DEPTH FLOW INFORMATION.

    > BASEWIDTH FEET) = 2.89FLOW TOP- WIDTH FEET) = 18.89

    43.57LOW AREA SQUARE FEET) =HYDRAULIC DEPTH(FEET) = 2.31FLOW AVERAGE VELOCITY(FEET/SEC.)UNIFORM FROUDE NUMBER = 1.332PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY HEAD FEET) =SPECIFIC ENERGY FEET) = 6.045

    11 . 4 8

    15226.212.045

    s c ~ _

    CRITICAL-DEPTH FLOW INFORMATION.

    CRITICAL FLOW TOP-WIDTH(FEET) = 21.12CRITICAL FLOW AREA SQUARE FEET) = 54.72CRITICAL FLOW HYDRAULIC DEPTB(FEET) = 2.59CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 9.14CRITICAL DEPTH(FEET) = 4.56CRITICAL FLOW PRESSURE MOMENTUM POUNDS) 14665.52AVERAGED CRITICAL FLOW VELOCITY BEAD (FEET) 1.297CRITICAL FLOW SPECIFIC ENERGY FEET) = 5.854

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    111/142

    100

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Prcblem 5.2.6.

    Determine the s ide slopes Z) o f a concrete t rapezoidal channeldischarging 500 cfs a t a flow depth of 4 fee t . Assume a channelbasewidth of 6 f ee t longi tudinal slope of 0.005 f t f t and aManning s fr ic t ion factor of n = 0.015.

    .

    CBANNEL INPUT INFORMATION

    NORMAL DEPTB FEET) = 4.00BASEWIDTH FEET) = 6.00CONSTANT CHANNEL SLOPE(FEET/FEET) = .005000UNIFORM FLOW CFS) = 500.00MANNINGS FRICTION FACTOR = .0150

    = = = = = = = = = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    NORMAL-DEPTH FLOW INFORMATION:

    1 .05 > CHANNEL Z-FACTOR =FLOW TOP- WIDTH FEET) =FLOW AREA SQUARE FEET) =

    1 4 . 3 740.75

    HYDRAULIC DEPTH FEET) = 2.83FLOW AVERAGE VELOCITY(FEET/SEC.) =UNIFORM FROUDE NUMBER = 1.284PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY HEAD FEET) KSPECIFIC ENERGY FEET) = 6.338

    12.27

    16277.762.338

    ======_======= a =================================================== a=

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL FLOW TOP-WIDTH FEET) = 15.59CRITICAL FLOW AREA SQUARE FEET) = 49.46CRITICAL FLOW HYDRAULIC DEPTH FEET) a 3.17CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 10.11CRITICAL DEPTH FEET) = 4.58CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 15818.05AVERAGED CRITICAL FLOW VELOCITY HEAD (FEET) = 1.587CRITICAL FLOW SPECIFIC ENERGY FEET) = 6.168

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    112/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.2 .7 .

    Given a t rapezoidal channel with a s lope of .014 f t / f t abasewidth of 5 feet, and a Z of 2, discharging 250 cfs , determinewhere a hydraul ic jump w i l l occur when the channel changes to as lope of 0.0015 f t / f t . Assume a Manning s f r i c t i on fac tor ofn = 0.015 and a channel length of 1000 f ee t .

    Step 1 . Determine normal depth data for a t rapezoidalchannel with a slope of 0.014 f t / f t .

    step 2. Determine the normal depth pressure plus momentumof a trapezoidal channel with a slope of 0.0015 f t / f t .

    Step 3. Knowing t h a t t he depth of f low i s 2.00 f e e t a t thegrade break from step 1), determine a gradually varied flowprof i le for the channel. Note t ha t the jump will occur wherethe P M from step 2 equals the P ~ from step 3

    , ,(CRITICAL DEPTH

    ' NORMAL DEPTH LINE~ - - - - - - . - - -.

    ONTROLSE TION

    -.. . . . . . .-------if -Assumedjump shape :

    : 10C\I

    SoaO.0015MILD SLOPE

    115

    101

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    113/142

    102

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Step 1: Determine normal depth data for a t rapezoidal channelwith a slope of 0.014 f t / f t

    . . . CHANNEL INPUT INFORMATION

    CHANNEL Z HORIZONTAL/VERTICAL) = 2 00BASEWIDTH FEET) = 5 00CONSTANT CHANNEL SLOPE FEET/FEET) = 014000UNIFORM FLOW CFS) = 250 00MANNINGS FRICTION FACTOR = 0150

    ================================================= ==========================

    NORMAL-DEPTH FLOW INFORMATION:

    2 00

    NORMAL DEPTH FEET)=

    FLOW TOP- WIDTH FEET) =FLOW AREA SQUARE FEET) =

    13 0018 01

    HYDRAULIC DEPTB FEET) = 1 39FLOW AVERAGE VELOCITY FEET/SEC.) =UNIFORM FROUDE NUMBER = 2 078PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY HEAD FEET) SPECIFIC ENERGY FEET) = 4 993

    1 3 B8

    7682 562 992

    =============== ==========================================================

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL FLOW TOP-WIDTB FEET) = 16 74CRITICAL FLOW AREA SQUARE FEET) = 31 92CRITICAL FLOW HYDRAULIC DEPTH FEET) = 1 91CRITICAL FLOW AVERAGE VELOCITY FEET/SEC.) = 7 83

    CRITICAL DEPTH FEET)=

    2 94CRITICAL FLOW PRESSURE + MOMENTUM POUNDS) = 6191 97AVERAGED CRITICAL FLOW VELOCITY HEAD FEET) = 952CRITICAL FLOW SPECIFIC ENERGY FEET) = 3 B88

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    114/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Step 2: Determine normal depth and pressure plus momentum of atrapezoidal channel with a slq;>e of 0.0015 f t / f t

    . . .CHANNEL INPUT INFORMATION

    CHANNEL Z HORIZONTAL/VERTICAL) = 2 00BASEWIDTB FEET) = 5 00CONSTANT CHANNEL SLOPE{FEET/FEET) = 001500UNIFORM FLOW CFS) 250 00MANNINGS FRICTION FACTOR = 0150

    = = = ~ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = . = . ~ = = =

    NORMAL-DEPTH FLOW INFORMATION:

    NORMAL DEPTH FEET) = 3 44FLOW TOP- WIDTH FEET) = 1 8 7 740 92LOW AREA SQUARE FEET)

    HYDRAULIC DEPTH FEET) = 2 l8FLOW AVERAGE VELOCITY FEET/SEC.)UNIFORM PROUDE NUMBER = 729PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY HEAD FEET) =SPECIFIC ENERGY FEET) = 4 022

    6 11

    6506 47580

    =============================== __ ==_.== ======================:=========CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL FLOW TOP-WIDTH FEET) = 16 74CRITICAL FLOW AREA SQUARE FEET) 31 92CRITICAL FLOW HYDRAULIC DEPTH FEET) 1 91CRITICAL FLOW AVERAGE VELOCITY FEET/SEC.) = 7 83CRITICAL DEPTH FEET)

    =2 94

    CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 6191 97AVERAGED CRITICAL FLOW VELOCITY HEAD{FEET) 952CRITICAL FLOW SPECIFIC ENERGY FEET) = 3 888

    103

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    115/142

    104

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Step 3: From step 1 we know that the flow depth i s 2.0 feet at thegrade break. Determine a gradually varied f low p ro f i l e for thechannel. Note t h a t a jump wi l l occur where the pressure p lusIIIOIlElltum from step 2 equals the pressure plus momentum of step 3.

    .GRADUALLY VARIED FLOW PROFILE INPUT INFORMA1 ION,

    CONSTANT CHANNEL SLOPE FEET/FEET) .001500CHANNEL LENGTH(FEET) = 1000.00CONSTANT CHANNEL FLOW(CFS) 250.00CONSTANT CHANNEL FRICTION FACTOR(MANNING) a .015000ASSUMED CHANNEL CONTROL DEPTH (FEET) 2.00M XIMUM NUMBER OF INTERVALS IN PROFILE 15CONSTANT CHANNEL BASEWIDTH(FEET) 5.00CONSTANT CHANNEL Z FACTOR D 2.0000NORMAL DEPTH FEET) 3.44CRITICAL DEPTH(FEET) 2.94

    UPSTREAM CONTROL ASSUMED DEPTH(FT) = 2.00============================================================================

    GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION,

    DISTANCE FROM F L O ~ I E P T HVELOCITY SPECIFIC PRESSURE+CONTROL FT) FT) FT/SEC) ENERGY FT) MOMENTUM (POUNDSj

    000 2.000 13.885 4.995 7685.5816 509 2.062 13.281 4.S03 7464.5032.762 2.125 12.717 4.637 7266.174S.705 2.1S7 12.190 4.496 7088.8864.274 2.250 11.696 4.375 6931.1279.399 2.312 11.233 4.272 6791. 5793.997 2.374 10.798 4.186 6669 06

    107.970 2.437 10.389 4.113 6562 53121.206 2.499 10.003 4.054 6471. 06133.565 2.561 9.639 4.005 6393.80144.883 2.624 9.295 3.966 6330 01154.955 2.686 8.970 3.936 6279 02163.524 2.749 8.662 3.914 6240.24170.263 2. Sl1 8.371 3.900 6213.12174.744 2.873 8.094 3.891 6197 18176.392 2.936 7.831 3.888 6191. 97

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    116/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5 3 1

    A tr iangular shaped concrete channel with a z of 1.5 having aslope of 0.003 f t f t conveys 20 cfs Determine normal depth andcrit ical depth data for the channel assuming a Manning s frictionfactor of n = 0.015.

    NORMAL DEPTH

    1 5

    . . A . CHANNEL INPUT INFORMATION

    CHANNEL Z(HORIZONTAL/VERTICAL) = 1 50BASEWIDTH(FEET) = 00CONSTANT CHANNEL SLOPE FEET/FEET) = 003000UNIFORM FLOW(CFS) = 20 00MANNINGS FRICTION FACTOR = 0150

    NORMAL-DEPTH FLOW INFORMATION:

    > NORMAL DEPTH FEET) 1 75FLOW TOP- WIDTH(FEET) =FLOW AREA(SQUARE FEET) =HYDRAULIC DEPTH FEET) = 87FLOW AVERAGE VELOCITY FEET/SEC.)UNIFORM FROUDE NUMBER = 826PRESSURE MOHENTUH(POUNDS) =AVERAGED VELOCITY HEAD(FEET) =

    5 244 57

    SPECIFIC ENERGY(FEET) = 2 043

    4 38

    335 52298

    = = = ~ = = = = = = = = = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = = = = = = = ~ = = = = = = = = =

    CRITICAL-DEPTH FLOW INFORMATION:----------------------

    CRITICAL FLOW TOP-WIDTH FEET) = 4 85CRITICAL FLOW AREA (SQUARE FEET) = 3 93CRITICAL FLOW HYDRAULIC DEPTH FEET) = 81CRITICAL FLOW AVERAGE VELOCITY FEET/SEC.) = 5 09CRITICAL DEPTH FEET) = 1 62CRITICAL FLOW PRESSURE MOMENTUM(POUNDS) = 329 55AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 403CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2 021

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    117/142

    106

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.3.2.

    Determine t he normal depth and c r i t i c a l depth data for atriangular shaped concrete channel conveying 20 cfs . Assume a Zof 1.5, a channel slope of 0.010 f t f t and a Manning s f r i c t i o nfac tor of n = 0.015.

    .L::CRITICAL OEPTlL r r -.-

    NORM L EPTH

    ~ ,

    CHANNEL INPUT INFORMATION

    CHANNEL Z HORIZONTAL/VERTICAL) = 1.50BASEWIDTH FEET) = .00CONSTANT CHANNEL SLOPE FEET/FEET) = .010000UNIFORM FLOW CFS) = 20.00MANNINGS FRICTION FACTOR = .0150

    = = = = = = = = = = = = = = = = = = = = = ~ - = ===================== ============== = = = = = = = ~ = =NORMAL-DEPTH FLOW INFORMATION:

    1.39 NORMAL DEPTH FEET) =FLOW TOP- WIDTH FEET) =FLOW AREA SQUARE FEET) =

    4.172.90

    HYDRAULIC DEPTH FEET) = .70FLOW AVERAGE VELOCITY FEET/SEC.) ~UNIFORM FROUDE N U M B ~ R= 1.457PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY BEAD FEET) =SPECIFIC ENERGY FEET) = 2.129

    6.90

    351.16.738

    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = = = = = =

    CRITICAL-DEPTH FLOW INFORMATION:CRITICAL FLOW TOP-WIDTH PEET) = 4 . 8 5CRITICAL FLOW AREA SQUARE FEET) = 3.93CRITICAL FLOW HYDRAULIC DEPTH FEET) = .81CRITICAL FLOW AVERAGE V E L O C I T Y F E E ~ / S E C . )= 5.09CRITICAL DEPTH FEET) = 1.62CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 329.55AVERAGED CRITICAL FLOW VELOCITY H E ~ D F E E T ) .403CRITICAL FLOW SPECIFIC ENERGY FEET) = 2.021

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    118/142

    HYDRAULIC ELEMENTS EXAMPLE PROB= L= EccM = S=

    Problem 5.3.3.

    Compute the discharge rate n a triangular shaped concrete channelhaving a flow depth of 2 feet. Assume a Z of 1.5, a channel slopeof 0.010 f t f t and a Manning s fr ic t ion factor of n = 0.015.

    1 7

    . . .

    CHANNEL INPUT INFORMATION----------------------------------------------------------------------------

    NORMAL DEPTH FEET) 2.00CHANNEL Z HORIZONTAL/VERTICAL) = 1.50BASEWIDTH FEET) = .00CONSTANT CHANNEL SLOPE(FEET/FEET) = .010000MANNINGS FRICTION FACTOR = .0150_ cNORMAL-DEPTH FLOW INFORMATION:

    NORMAL DEPTH FLOW CFS) =FLOW TOP- WIDTH (FEET) =FLOW AREA SQUARE FEET) aHYDRAULIC DEPTH FEET) = 1 .00FLOW AVERAGE VELOCITY(FEET/SEC.)UNIFORM FROUDE NUMBER = 1.544PRESSURE MOMENTUM POUNDS) =AVERAGED VELOCITY HEAD (FEET) =

    52.586.00

    6.00

    8.76

    1142.631.193

    SPECIFIC ENERGY FEET) = 3.193============================================================================

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL FLOW TOP-WIDTH FEET) 7.14CRITICAL FLOW AREA SQUARE FEET) = 8.50CRITICAL FLOW HYDRAULIC DEPTH FEET) = 1 .19CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 6.19CRITICAL DEPTH FEET) = 2.38CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 1051.24AVERAGED CRITICAL FLOW VELOCITY HEAD (FEET) .594CRITICAL FLOW SPECIFIC ENERGY FEET) = 2.975

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    119/142

    108

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.3.4.

    For a t r i angu lar shaped concrete channel conveying 20 c f s ,determine the channel slq:>e required to maintain a flow depth o 2feet. Assume a channel Z = 1.5 and a Manning S fr ic t ion factor ofn ,. 0.015.

    .

    CHANNEL INPUT INFORMATION

    NORMAL DEPTH(FEET) = 2.00CHANNEL Z(HORIZONTAL/VERTICAL) = 1.50BASEWIDTH(FEET) = .00UNIFORM FLOW(CFS) = 20.00MANNINGS FRICTION FACTOR .0150

    = = ~ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = = = = = = = = = =

    NORMAL-DEPTH FLOW INFORMATION.

    CHANNEL SLOPE(FEET/FEET) = .00145FLOI l TOP- WIDTH (FEET) = 6.00FLOW AREA (SQUARE FEET) = 6.00HYDRAULIC DEPTH FEET) 1 .00FLOW AVERAGE VELOCITY(FEET/SEC.) 3.33UNIFORM FROUDE NUMBER = .587PRESSURE MOM NTUM (POUNDS) = 378.79AVERAGED VELOCITY HEAD(FEET) = .173SPECIFIC ENERGY(FEET) 2.173

    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~ . = = = = == = = = = = = = = = = = = = = = = = = = =

    CRITICAL-DEPTH FLOW INFORMATION.

    CRITICAL FLOW TOP-WIDTH(FEET)=

    4.85CRITICAL FLOW AREA (SQUARE FEET) = 3.93CRITICAL FLOW HYDRAULIC DEPTH(FEET) = .81CRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) = 5.10CRITICAL DEPTH(FEET) = 1 .62CRITICAL FLOW PRESSURE MOMENTUM(POUNDS) = 329.55AVERAGED CRITICAL FLOW VELOCITY HEAD (FEET) = .403CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.021

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    120/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5 3 5

    Determine the channel side slopes (Z) necessary for a triangularshaped concrete channel to convey 20 efs a t a flow aeptb of 2 feetand having a longi tud inal s lope of 0.010 f t / f t Assume a

    Manning s friction factor of n = 0 015

    CHANNEL INFur INFORMATION

    NORMAL DEPTB(FEET) = 2 00BASEWIDTH FEET) 00CONSTANT CHANNEL SLOPE(FEET/FEET) = 010000UNIFORM FLOW CFS) = 20 00MANNINGS FRICTION FACTOR 0150

    NORMAL-DEPTH FLOW INFORMATION,

    } CHANNEL Z-FACTOR = 72FLOW TOP- WIDTH (FEET) = 2 69FLOW A R ~ S Q U A R EFEET) = 2 89HYDRAULIC DEPTH(FEET) = 1 00FLOW AVERAGE VELOCITY (FEET/SEC.) = 6 93UNIFORM FROUDE NUMBER = 1 221PRESSURE MOM NTUM POUNDS) = 388 65AVERAGED VELOCITY HEAD FEET) = 746SPECIFIC ENF.RGY{FEET) = 2 146

    109

    ===_====_==== ================================================_========c====CRITICAL-DEPTH FLOW I ~ F O R M A T I O N :

    CRITICAL FLOW TOP-WIDTH{FEET) = 3 13CRITICAL FLOW AREA SQUARE FEET) = 3 39CRITICAL FLOW HYDRAULIC DEPTH{FEET) 1 0BCRITICAL FLOW AVERAGE VELOCITY(FEET/SEC.) 5 91CRITICAL DEPTH{FEET) = 2 11CRITICAL FLOW PRESSURE MOMENTUM POUNDS) = 381 51AVERAGED CRITICAL FLOW VELOCITY HEAD (FEET) = 542CRITICAL FLOW SPECIFIC ENERGY{FEET) = 2 70B

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    121/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    122/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.4.2.

    Using the da ta from 5.4.1, assume flow s car r ied evenly on bothsides of the street.

    STREETFLOW MODEL INPUT INFORMATION

    CONSTANT STREET GRADE(FEET/FEET); .010000CONSTANT STREET FLDW(CFS) 5.00AVERAGE STREETFLOW FRICTION FACTOR[MANNING) ;CONSTANT SYMMETRICAL STREET HALF-WIDTH[FEET)CONSTANT S ~ M M E T R I C LSTREET CROSSFALL[DECIMAL)CONSTANT S ~ M M E T R I C LCURB HEIGrH[FEET ; .50

    .01500020.00

    .017000

    CONSTANT S ~ M M E T R I C LGUTTER-WIDTH[FEET) 1.50CONSTANT S ~ M M E T R I C LGUTTER-LIP[FEET) = .03125CONSTANT SYMMETRICAL GUTTER-HIKE(PEET) = .12500FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES

    STREETFLOW MODEL RESOLTS:

    STREET FLOWDEPTB(FEET) .32HALFSTREET FLOODWIDTH(FEET) 11.33AVERAGE FLOW VELOCITY(FEET/SEC.) 2.06PRODUCT OF DEPTH VELOCITY = .67

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    123/142

    112

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.4.3.

    Using the s t ree t cross section of Problem 5.4.1, determine thedepth of flow for 35 cfs assuming the flow i s carried evenly onboth sides of the street

    . . . . . .

    STREETFLOW MODEL INPUT INFORMATION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    CONSTANT STREET GRADE FEET/FEET] .010000CONSTANT STREET FLOW CFS]. 35.00

    .01500020.00

    .017000

    AVERAGE STREETFLOW FRICTION FACTOR MANNING]CONSTANT SYMMETRICAL STREET HALF-WIDTH FEET] =CONSTANT SYMMETRICAL STREET CROSSFALL DECIMAL)CONSTANT SYMMETRICAL CURB HEIGTH FEET] - .50

    CONSTANT SYMMETRICAL GUTTER-WIDTH FEET] 1.50CONSTANT SYMMETRICAL GUTTER-LIP FEET] - .03125CONSTANT SYMMETRICAL GUTTER-HIKE FEET) .12500FLOW ASSUMED TO FILL STREET EVENLY ON BOTH SIDES

    STREET LOWING F U L L ~

    ~ = = = = = = = = = = = = = = = = = = = = = = = = a = = = = = = = _ = ============== ======================STREETFLOW MODEL RESULTS;

    NOTE; STREETFLOW EXCEEDS TOP OF CURB.THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTIONTHAT NEGLIBLE PLOW OCCURS OUTSIDE OP THE STREET CHANNEL.THAT IS ALL PLOW ALONG THE PARKWAY, ETC., IS NEGLECTED.

    STREET FLOWDEPTH FEET] .52HALFSTREET FLOODWIDTH FEET) = 20.00AVERAGE FLOW VELOCITY FEET/SEC.) 3.89PRODUCT OF DEPTH.VELOCITY = 2.02

    : = = = = = : = = = = = = ~ = = c ~ = = . = = = = = ~ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    124/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    125/142

    114

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.5.1.

    Dete :mine the upstJ:eam and downstJ:eam flow depths fo : the jWlCtionshown. Note that a ze :o flow depth in d t input assumes normal

    depth.

    LEGEND

    54 RCPII

    71 OOcfs~ r

    II

    ~ So=0.004

    NOL NORM L DEPTH LINE

    COL CRITICAL DEPTH LINE

    l FLOWl.INE El.EVATIONRCP REINfORCEO CONCRETE PIPE

    o PROfiLE~ : ; r P O S S I 8 L EW TER SURF CE

    JE.3Q /t l

    NIlL- - 7 - -\ua COL

    IOZ II

    ' 1 l5499.5

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    126/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    127/142

    6

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.5.2.

    Determine the upstream and downstream flow depths for the previousproblem assuming tha t the 48 inch RCP flowline matches the 54 inch

    RCP flowline.

    PIPE-FLOW JUNCTION INPUT INFORMATION

    PIPE

    UPSTREAMDOWNSTREAM

    LATERAL tLATERAL 12

    FLOW(CFS)

    70.001 0 0 .0 0

    25.005.00

    DIAMETER(INCHES)

    48.0005 4 .0 0 03 0 .0 0 01 8 .0 0 0

    SLOPE(DECIMAL)

    .00400

    .00400

    .00500

    .00600

    MAINLINE FLOWDEPTH INPUT INFORMATION:UPSTREAM PIPEFLOW DEPTH (FEET) , .00DOWNSTREAM PIPEFLOW DEPTH(FEET): .00

    FRICTIONFACTOR

    .0130

    .0130

    .0130

    .0130

    ANGLE(DEGREES)

    .000

    .00020.00045.000

    FLOWLINEELEVATION

    100.00100.00101. 00102.00

    =.= = = = - ~ =.... = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = = = = = = = = =PIPEFLOW

    NORMAL ANDCRITICAL DEPTH INFORMATION,

    PIPE

    UPSTREAMDOWNSTREAM

    LATERAL tLATERAL 12

    CRITICAL DEPTH(FEET)2 .5292.9381 .703

    .860

    NORMAL DEPT(FEET)

    2.6343 .0 5 61 . 790

    . 8 5 0

    PRESSURE-PLUS-MOMENTUM DETERMINATION BASED ON VARIABLE,"BALANCE" (Z+DI-D2)*(Al+A2)*G/2.-Q2*02/A2+01*Ol*COS(ANGLEl)/Al+Q3*Q3*COS[ANGLE3)/A3+Q *Q4*COS[ANGLE4)/A4

    CHECK FOR JUNCTION WASHOUT DOE TO LATERALS OR JUNCTION DROP,PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION (NEGLECT MINOR LOSSES)

    UPSTREAM DOWNSTREAM LATERAL.1 LATERAL.2 BALANCEDEPTB(FT) DEPTB(FT) DEPTB(FT) DEFTH(FT) (FT'*4)

    2 .634 3 .0 5 6 1 .845 .850 - 2 8 1 ."DOWNSTREAM PIPEFLOW DEPTH IS ASSUMED AS HYDRAULIC CONTROL

    CHECK IF JUNCTION SEALS DUE TO DOWNSTREAM CONTROL.PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION (NEGLECT MINOR LOSSES)

    UPSTREAM DOWNSTREAM LATERAL.l LATERAL.2 BALANCEDEPTB(FTl DEFTH(FTl DEPTH(FT) DEPTH(FT) (FT* 41

    4 .0 0 0 3.056 2.528 .850 23 .'UPSTREAM FLOW ASSUMED NOT SEALED.

    PIPEFLOW FORCE-PLUS-MOMENTUM DETERKINATION(NEGLECT MINOR LOSSES)UPSTREAM DOWNSTREAM LATERAL.l LATERALf2 BALANCEDEPTH (FT) DEFTH(PT) DEPTH (FT) DEPTH (FT) (PT '4)

    3.254 3 .0 5 6 2 .1 5 5 850 -203 3.617 3 .0 5 6 2 .3 3 7 850 -1 0 8

    3.799 3 .0 5 6 2 .4 2 7 850

    -49 3 .889 3.056 2 .473 850 -18 3 .9 3 5 3.056 2 .495 .850 -2 .3.957 3 .0 5 6 2.507 .8 5 0 7 .3 .9 4 6 3 .0 5 6 2 501 850 3 3.940 3 .0 5 6 2.498 850 O3.937 3 .0 5 6 2 .4 9 7 .850 l .3.939 3 056 2.497 850 O3.940 3 .0 5 6 2.498 850 O3.939 3 .0 5 6 2.498 850 O

    DOWNSTREAM CONTROL ASSUMED AT JUNCTION

    COMPUTED UPSTREAM PIPEFLOW DEPTH(FEET) = 3.939COMPUTED DOWNSTREAM PIPEFLOW DEPTH(FEET) 3.056

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    128/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5 5 3

    Analyze the junction structure shown with supercri t ical flowupstIeam and downstream. 1\gain note that a zero flow depth shownfor data input means normal depth of flow.

    POSSIBLE WATER5URF ACE

    30

    PROGRAM ASSUMESHYDRAULIC JUMPOCCURS UPSTREAM

    OF STRUCTURE

    PROGRAM ASSUMESCRITICAL DEPTHAS CONTROL

    5 PROF ILE

    7

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    129/142

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    130/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Proolem 5.5.4.

    Analyze the following junction structure assuming normal depth offlow upstream and downstream

    II

    60cl ll o

    I

    PROGRAM ASSUMESSOFFIT CONTROL

    4S RCP

    PROGRAM ASSUMESNORMAL OEPTH

    E 48100

    119

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    131/142

    12

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    . .

    PIPE-FLOW JUNCTION INPUT INFORMATION

    PIPE

    UPSTREAMDOWNSTREAMLATERAL lLATERAL 12

    FLOWCFS)60.0090.0025.00

    5.00

    DIAMETER(INCHES)

    48.00048.00030.00018.000

    SLOPE(DECIMAL)

    .00400

    .00400

    .00500

    .00600

    MAINLINE FLOWDEPTH INPUT INFORMATION:UPSTREAM PIPEFLOW DEPTH FEET). .00DOWNSTREAM PIPEFLOW DEPTH FEET): .00

    FRICTIONFACTOR

    .0130

    .0130

    .0130

    .0130

    ANGLE(DEGREES)

    .000

    .00020.00045.000

    FLOWLINEELEVATION

    100.00100.00101. 00102.00

    ============ ===========================================

    PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION:

    PIPE

    UPSTREAMDOWNSTREAMLATERAL HLATERAL t 2

    CRITICAL DEPTHFEET)2.3342.8761 703

    .860

    NORMAL DEPTHFEET)2.3733.2451 .7 9 0

    .850

    PRESSURE-PLUS-MOMENTUM DETERMINATION BASED O VARIABLE.BALANCE Z+DI-D2)* Al+A2)*G/2.-02*02/A2+01*Ol*COS ANGLEl)/Al

    +Q3*03*COS ANGLE3)/A3+04*04*COS ANGLE4)/A4

    CHECK FOR JUNCTION WASHOUT DUE TO LATERALS OR JUNCTION DROP:PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)

    UPSTREAM DOWNSTREAM LATERAL.l LATERALt2 BALANCEDEPTH FT) DEPTH FT) DEPTH FT) DEPTB FT) FT*4)

    2.373 3.245 1.809 .850 -369 .DOWNSTREAM PIPEFLOW DEPTH IS ASSUMED AS HYDRAULIC CONTROL

    CHECK IF JUNCTION SEALS DUE TO DOWNSTREAM CONTROL:PIPEFLOW FORCE-PLUS-MOMENTUM DETERMINATION(NEGLECT MINOR LOSSES)

    UPSTREAM DOWNSTREAM LATERALtl LATERALt2 BALANCEDEPTH FT) DEPTH(FT) DEPTH FT) DEPTH FT) FT 4)

    4.000 3.245 2.623 .850 -33 .

    UPSTREAM WATER DEPTH EXCEEDS PIPE DIAMETER:.SUGGEST REANALYZE JUNCTION AS UNDER PRESSURE-FLOW CONDITIONS.

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    132/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Prcblem 5 5 5

    Determine the upstream and downstream flow depths for the junctionshown assuming norml depth upstream and downstream.

    - ,

    '

    4S RCP

    100 cIsa

    50=0 006

    L 481 /

    COL

    \ L 4 2

    99.5

    42 RCP

    IOOch

    So=O OIO

    -.en

    121

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    133/142

    122

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    ~ . . w . . _

    PIPE-FLOW JUNCTION INPUT INFORMATION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ -- - - - - - - - - - - - - - - - - - - - - -

    PIPE

    UPSTREAIIDOlrnSTREAIILATERAL nLA'l"ERAL . 2

    FLOWCFS)

    100.00100.00

    .00

    .00

    DIAMETER(INCHES)

    48.00041.000

    .0000 0 0

    SLOPE(DECIMAL)

    .00600

    .01000

    .00000

    .00000

    MAINLINE FLOWDEPTR INPUT INFORMATION;UPSTREAM PIPEFLOW DEPTB FEET); .00DO OliSTREAII PIPEFLOW DEPTH FEET): .00

    FRICTIONFACTOR

    .0130

    .0130

    .0000

    . 0000

    PIPEFLOW NORMAL AND CRITICAL DEPTH INFORMATION;

    A N G ~ E

    (DI GREESI.000. 0 0 0.000. 000

    F L O W L I N ~

    ELEVATION100.00

    9 9 . 5 0.00. 0 0

    PIPE

    UPSTREAMDOlrnSTREAIILATERAL HLATERAL t2

    CRITICAL DEPTHFEET)3.0303.068

    . 0 0 0

    .000

    NORMAL DEPTHFEET)2.9632.850

    .000

    .000

    PRESSORE-PLOS-MOMENTUM DETERMINATION BASED ON VARIABLE."BALANCE" ~ ( Z + D 1 - D 2 ) ( A l + A 2 ) G / 2 . - Q 2 Q 2 / A 2 ~ 1 Q l C O S ( A N G L E 1 )+Q3*Q3*C05 ANGLE3)/A3+Q4*04*COS ANGLE4)/A4

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -U P S ~ R E A MFLOW lS SUPERCRITICAL: CHECK FOR HYDRAULIC JUMp;PIPEFLOW F O R C E ' P L U S - M O M E N T U ~DETERMINATION(NEGLECT MINOR LOSSES)

    UPSrEEAM DOWNSTRE M LATERAL.l LATERALi2 BALANCEDEPTH (FT) DEPTH FT) DEPTB(FT) DEPTR(FT) FT**4)

    2.963 3.068 .000 .000 4* U P S T R E ~FLOW DOMINATES JUNCTION HYDRAULICS:"NO HYDRAULIC JUMP OCCURS AT JUNCTION.

    P I P E P ~ O WFORCE-PLUS-MOMENTUM DETERMINATION/NEGLECT MINOR LOSSES)UPSTRE IoI DOWNSTRE IoI L TEIl LU LATERALt BALANCED E P T R ( F ~ )DEPTH FT) DEPTH{FTj DEPTH/FTj (F T ' )

    ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2.963 1.534 . 000 .000 -1027 2.963 2.301 .000 000 -177 2 .9 6 , 2.685 .000 000 -37 2.963 2.877 . 000 .000 6 .2.963 2.973 000 000 1 2.963 2.925 .000 000 -2 2.963 2.949 .000 000 O2 . 9 6 3 2.937 000 000 -1 2 . 9 6 3 2.943 .000 .000 O.2.963 2.946 .000 000 O2 .963 2.947 . 000 000 O2.963 2 . 9 4 8 000 .000 O2.963 2 . 9 4 8 . 0 0 0 000 O

    UPSTREAM CONTROL hSSUMED AT JUNCTION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

    COMPUTED UPSTREAM PIFEfLOW DEPTP(FEET) = 2.963COMPUTED DOWNSTRE M PIPEFLOW DEPTH(fEET) - 2.947

    = = = = = = = ~ = = = = . = . = ~ . ~ . = = ~ = = = = = = = = = = = = = = ~ = = = = = = ~ = = = = = = . = = . = = = = = ~ = =

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    134/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    123

    Problem 5.6.1.

    Determine the gradually varied flow prof i l e for a 78 inch RCPflowing partially flow with 300 cfs, which changes from a slope of0.004 f t / f t t o 0.0035 f t / f t Assume a channel l en g th of 500 f e e tand a Manning s f r ic t ion factor of n = 0.013.

    . .Q.. :

    /...:--:. 1 MI PROFILE, DEPTH---.. 'F NORMAL

    N o r ~d e ; t h / ; ; , ~ - - c R i i i C A LO E P T H : : : ; t - ~- ll:CD.. :

    SO-0.0040MILO SLOPE So-0.0035

    M I L o E RMILD SLOPE

    CONTROLSECTION

    iQI II

    )

    . . .GRADUALLY VARIED FLOW PROFILE INPUT INFORMATION,

    CHANNEL SLOPE(FEET/FEET) = .004000CHANNEL LENGTH (FEET) = 500.00CONSTANT CHANNEL FLOW CFS) = 300.00CONSTANT CHANNEL FRICTION FACTOR MANNING)ASSUMED CHANNEL CONTROL DEPTB(FEET) =MAXIMUM NUMBER OF INTERVALS IN PROFILE =CONSTANT PIPE DIAHETER(INCHES) = 78.000NORMAL DEPTH FEET) = 4.84

    CRITICAL DEPTH(FEET) = 4.65

    .0130005.15

    15

    = = ~ = = = = = = = = = = = = = = = = ~ = = = = = = = = = = = = = _ = = = = = = = = = = ~ = = . ~ = = = E =_ = = = = _ = = = = = = = = = = = = = = =

    DOWNSTREAM CONTROL ASSOMED DEPTH{FT) = 5.15= = = : = = : : = ~ = : = = = : = = = = . = = . = = = = ~ = = = = = ~ . = = = = = = = ~ = = = = = = = = = == = = = = = = = = = = = = = = = = = = = =

    GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:

    DISTANCE FROMCONTROt. (FT)

    .00014.00928.38643.19158.50774.43691.111

    108.7161 2 7 .5 0 4147.B41170.320195.B85226.334265.666326.519500.000

    FLOWDEPTB(FT)

    5.1505.1305.1095 .0895.0685 .0485 .0275.007

    4 .9 8 64.9664 .9454 .9254.9044.8844 .8644.857

    VELOCITY(FT/SEC)

    10.63610.67110.71910.7611 0 .8 0 31t).84110 .89010.935

    10.98011 .02511.07111.11B11 .16511.21311 .26111.277

    SPECIFICENERGY (FT)

    6.9086.9016.8946.8886.8826.8766.8706.8656.8596.8546 .8506 .8456.8416.8386.8346.833

    PRESSURE+MOMENTUMPOUNDS)

    10295.3110282.6810271.6610261. 0210250.7710240.9210231. 4810222.4510213.10205.6210197.8610190.5210183.6210177.1710171.1810169.37

    in

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    135/142

    124

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.6 .2

    Given t h a t a 78 inch RCP carrying 200 cfs changes from a slc:pe of0.0015 f t / f t to a slope of 0.0021 f t / f t determine the gradual lyvar ied flow pro f i l e assuming a pipe length of 3000 fee t and aManning s f r ic t ion factor of n = 0.013.

    Normal deDth IIneM 2 PPOFILE

    ,., NORMALDEPTH,

    / \' I- - - -/ \- cRiT CALDEPTH 'u '- r

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    136/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Pt:oblern 5.6 .3 .

    Determine the water surface of an M3 profi le in a 78 inch RCPdischarging 300 cfs as i t changes slope from 0.0067 f t / f t to aSlope of 0.0040 f t / f t . Use a pipe length of 500 feet and aManning s friction factor of n = 0.013. Note that the flow depthis only calculated to cri t ical depth. A hydraulic jUmp will occurwhere the pressure plus momentum of the M3 profile equals that ofnormal depth flow.

    /

    .J ).r...E..R. .CAlDEIin t - - '_-IH Normal dOPth IIno

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    137/142

    126

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    . . . . ~ . . ~ ~ . . . . . . . . + . .PIPEFLOW HYDRAULIC INPUT INFORMATION

    PIPE DIAMETER FEET) = 6.500PIPE SLOPE(FEET/FEET) .0040PIPEFLOW CFS) = 300.00MANNINGS FRICTION FACTOR a .013000

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL DEPTH FEET) = 4.65CRITICAL FLOW AREA SQUARE FEET) = 2 5 . 4 0 4CRITICAL FLOW TOP-WIDTH FEET) = 5 . 8 6 6CRITICAL FLOW PRESSURE + MOMENTUM POUNDS) 10128.91CRITICAL FLOW VELOCITY FEET/SEC.) = 11 . 8 0 9CRITICAL FLOW VELOCITY BEAD FEET) = 2.17CRITICAL FLOW HYDRAULIC DEPTH FEET) 4.33CRITICAL FLOW SPECIFIC ENERGY FEET) = 6 . 8 2

    = = = = = = = = = ~ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = ~ == = = = = = = = = = = = = = = = = = = = = =

    NORMAL-DEPTH FLOW INFORMATION:

    NORM L DEPTB PEET) = 4.84FLOW AREA SQUARE FEET) = 26.51FLOW TOP WIDTH FEET) 5.666FLOW PRESSURE MOMENTUM PDUNDS) =FLOW VELOCITY FEET/SEC.) =FLOW VELOCITY BE D FEET) =HYDRAULIC DEPTB FEET) 4.68FROUOE NUMBER = .922SPECIFIC ENERGY FEET) =

    10165.4811.316

    1 .9 8 8

    6 .8 3

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    138/142

    I tD

    '

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.6.4.

    Determine an Sl gradual ly var ied flow p ro f i l e in a 78 inch Repflowing par t i a l ly f u l l with 300 c f s . Assume the pipe slopechanges from 0.0057 f t / f t to 0.0035 f t / f t . a Manning s f r i c t io nf ac tor o f n = 0.013 and a pipe length of 500 f t . Note tha t flowdepth is calculatd to cr i t i ca l depth only. Actually a hydraulicjump wi l l occur in t he steep sec t ion where the pressure plusmomentum of the gradual ly var ied flow p ro f i l e equals t ha t ofnormal depth flow.

    / '1

    I I -5 PROFILE' NORMAL DEPTH---.....- - -

    7- - - . -

    'Norma' depth line

    ====- CRITICAL DEPTHNote. Hydraulic jump nol shown)'' I

    127

    it>

    l i t5 0 - 0 . 0 0 5 7

    5 0 ' 0 . 0 0 3 5 \. )STEEP SLOPE

    ~MILD SLOPE

    CONTROLSECTION

    I ~

    GRADUALLY VARIED FLOW PROFILE INPUT INFORMATION:

    CHANNEL SLOPE(FEET/FEET) = .005700CHANNEL LENGTH FEET) = 500.00CONSTANT CHANNEL FLOW CFS) 300.00CONSTANT CHANNEL FRICTION FACTOR MANNING)ASSUMED CHANNEL CONTROL DEPTH (FEET) =MAXIMUM NUMBER OF INTERVALS IN PROFILE =CONSTANT PIPE DIAMETER INCHES) = 78.000NORMAL DEPTH(FEET) = 4.23CRITICAL DEPTH(FEET) = 4.65

    = .0130005.15

    10

    DOWNSTREAM CONTROL ASSUMED DEPTH FT) = 5.15

    GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:

    DISTANCE FROM FLOWDEPTH VELOCITY SPECIFIC PRESSURE+CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM POUNDS).000 5.150 10.636 6.908 10295.31

    7.561 5.100 10.737 6.891 10266.9114.704 5.050 10.842 6.876 10242.0521. 384 5.000 10.949 6.863 10219.5927.545 4.950 11. 060 6.851 10199.6233.121 4.900 11.175 6.841 10182.2338.024 4.850 11.293 6.832 10167.5242.149 4 BOO 11.416 6.825 10155.5545.357 4.750 11.541 6.820 10146.4547.468 4.700 11.671 6.817 10140.3048.240 4.650 11.806 6.816 10128.91

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    139/142

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    128

    . ************* * * ~ * * . * * ~ * * * * * . . . . .PIPEFLOW HYDRAULIC INPUT I N F O R M A T I O ~

    PIPE DIAMETER FEET) = 6.500PIPE SLOPE FEBT/FEET) .0057PIPEFLOW CFS) = 300.00MANNINGS FRICTION FACTOR = .013000

    CRITICAL-DEPTH FLOW INFORMATION:

    CRITICAL DEPTH FEET) = 4.65CRITICAL FLOW AREA SQUARE FEET) = 25.404CRITICAL FLOW TOP-WIDTH FEET\ = 5.866CRITICAL FLOW PRESSURE ~ O ~ E N T U ~ P O U N D S )= 10128.91CRITICAL FLOW VELOCITY FEET/SEC.) = 11.809CRITICAL FLOW VELOCITY HEAD FEET) 2.17CRITICAL FLOW HYDRAULIC DEPTH FEET) = 4.33CRITICAL FLOW SPECIFIC ENERGY FEET) = 6.62

    NORMAL-DEPTa FLOW INFORMATION,

    NORMAL DEPTB FEET) = 4.23FLOW AREA SQUARE FEET)

    =22.67FLOW TOP WIDTH FEET) = 6.197

    FLOW PRESSURE + MOM NTUM POUNDS) =FLUW VELOCITY FEET/SEC.) =FLOW VELOCITY HEAD FEETJ =HYDRAULIC OEPTH FEETI 3.69FROUDE NUMBER = 1.203SPECIFIC ENERGY FEETI =

    10264.8913.118_2.672

    6.90

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    140/142

    HYDRAULIC ELEMENTS EXAMl'L l ROBLEMS

    129

    Problem 5.6.5.

    Given that a 78 inch RCP conveying 300 cfs changes from a slope of0.0066 f t / f t to a slope of 0.010 f t / f t determine the watersurface pro f i l e asuming a pipe length of 500 f t . and a Manning sf r i c t i on factor of n 0.013.

    LLCRITIC L DEPTH_

    ~ ~ ~ N O R M A LDEPTHD

    8 )() So-0.0066

    STEEP SLOPE

    n

    GRADUALLY VARIED fLOW PROFILE INPUT INFORMATION:

    CHANNEL SLOPE(FEET/FEET) = .010000CHANNEL LENGTH(FEETJ 500.00CONSTANT CHANNEL FLOW{CFS) 300.00CONSTANT CHANNEL FRICTION F A C T O R ~ A N N I N G IASSUMED CHANNEL CONTROL DEPTH(FEET) =MAXIMUM NUMBER OF INTERVALS IN PROFILE CONSTANT PIPE D I ~ E T E R I N C H E S )78.000NORMAL DEPTB(FEET) 3.52CRITICAL DEPTH(FEET) 4_65

    .0130004.00

    15

    = = = K = = = = ~ = = = = = = = = = = = = = = = = = = ~ C = = = = ~ = = = = = = = ; = = = = = = = = =UPSTREAM CONTROL ASSUMED DEPTH(FT) = 4.00

    GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:

    DISTANCE FROMCONTROL (FT)

    .0008.171

    17 .3822 7 8 0 2

    39.64253.17668 .764

    8 6 .8 9 3108.243133 .812165.143204.813257.637334.353468.865500.000

    f LOWDEPTH(FT)

    4.0003 .9683.9373.9053.an3.8423.810

    3.7783.7473.1153 .6833.6523.6203.5883.5573.556

    VELOCITY(FT/SEC)

    13 .99914.13214.26714.4051 4 . 5 4 614.69014.837

    1 4 . 9 8 715.14115.29815.45915.62315.79115.96316.13916.143

    SPECIFICENERGY (FT)

    7.0457.0717.0997.1291.1617.1947.230

    7.2687.3097.3517.3977.4447.4957.5487.6047.605

    PRESSURE+MOM NTUM (POUNDS)

    10458.6010492.8610529 . l l10567.4010607.7810650.3110695.03

    10742.0010791.2710842.9210896.9910953.5511012.6611074.3911143.6511145.11

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    141/142

    130

    HYDRAULIC ELEMENTS EXAMPLE PROBLEMS

    Problem 5.6.6.

    Determine the gradually varied flow prof i le for a 78 inch Repflowing partial ly ful l with 300 cfs which changes from a slope of0.0170 f t / f t to a slope of 0.010 f t / f t . Use a pipe length of 500feet and a Manning's fr iction factor of n = 0.013.

    -1 f

    n ~ -C fB J A l OE \D

    \ _ - , T H (T { ? - . . . . . .~ f f \ ~ N o r m a ldepth line \NORMAl

    OEPTH \ ' " *i 53 PROFIL.E. /SooO.OI7'O }: l

    of

    S o 0.010T PSLOP MILDER STEEP SLOPE

    CONTROLSECTION

    . . . . GRADUALLY VARIED FLOW PROFILE INPUT INFORMATION:

    CHANNEL SLOPE(FEET/FEET) = .010000CHANNEL LENGTH(FEET) = 500.00CONSTANT CHANNEL FLOW(CFS) = 300.00CONSTANT CHANNEL FRICTION FACTOR(MANNING)ASSUMED CHANNEL CONTROL DEPTB(FEET) =MAXIMUM NUMBER OF INTERVALS IN PROFILE =CONSTANT P I P ~D I A M ~ T ~ R ( I N C H E S )= 78.000NORMAL DEPTH(FEET) = 3.52CRITICAL DEPTB(FEET) = 4.65

    .0130003.00

    15

    = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

    UPSTREAM CONTROL ASSUMED DEPTH(FT) = 3.00GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:

    DISTANCE FROMCONTROL(FT)

    .00021.597

    44.22468.05093.288

    120.212149.181180.682215.398254.326299.0093 5 2 . 0 2 5418.187500.000

    FLOWDEPTH(FT)

    3.0003.0353.0703.1053 . 1 3 93.1743.2093.2443.2793.3143.3493 . 3 6 43.4183.450

    VELOCITY(FT/SEC)

    20.03619.73819.44919.1671 8 . 6 9 418.62818.36918.11817.87317.63517.4031 7 . 1 7 716.95716.762

    SPECIFICENERGY (FT)

    9.2389.0888.9478.8138 . 6 8 68.5668.4528.344B.2428 .146B.0547.9697. BB67.616

    PRESSURE+MOMENTUM (POUNDS)

    12834.0912693.4412558.2112428.2012303.2512183.1612067.7911956.9511850.4911748.2911650.2111 5 5 6 . 1111465.8511 3 8 7 1 0

    ; = = = = = = = = = = = = = = = = = = = = = = = = = a = = = ~ = = = = = = = = = = = = = = = = = = = = = =

  • 8/11/2019 AES Computational Hydraulics for Civil Engineers

    142/142

    REFERENCES

    Brater, E.F. and King, H.W. Handbook of Hydraulics for theSolut ion of Hydraulic Engineering Problems, Sixth Edit ion , Md;raw-Hill Book Co., New York, (1976).

    Daugherty, R.L. and Fran z i n i , J .B. , Fl u i d Mechanics withEngineering AWlicat1ons, McGraw-Hill ook Co., New York, (1977).

    Hromadka I I T.V., Clements, J.N., and Sa lu ja , H., ComputerMethods in Urban Watershed Hydraulics , Lighthouse Publications,Mission Viejo, California, 1984.

    Hromadka I I T.V., Clements, J.N., and Guymon, G.L., -Guidelinesfor Interact ive Software in Water Resources Engineering,- WaterResources Bulletin, Feb. (1983c)

    Hromadka I I T.V., Durbin, T.J. and DeVries, J . J . , ComputerMethods i n Water Resources , Lighthouse Publicat ions , MissionViejO, California, (1985).

    Kouti tas , C.G., Elements of Computational Hydraulics r PentechPress, (1983).