aerodynamics model for a generic astovl lift-fan aircraft · nasa technical memorandum 110347...

64
NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter E. McNeill, and Douglas A. Wardwell, Ames Research Center, Moffett Field, California April 1995 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 https://ntrs.nasa.gov/search.jsp?R=19950019882 2018-06-30T14:36:35+00:00Z

Upload: duongbao

Post on 26-May-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

NASA Technical Memorandum 110347

Aerodynamics Model for aGeneric ASTOVL Lift-FanAircraft

Lourdes G. Birckelbaw, Walter E. McNeill, and Douglas A. Wardwell, Ames Research Center,

Moffett Field, California

April 1995

National Aeronautics andSpace Administration

Ames Research CenterMoffett Field, California 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19950019882 2018-06-30T14:36:35+00:00Z

Page 2: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter
Page 3: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Nomenclature

Aj,total

b

CD

CGFS

CGWL

CI

CI[_

CIp

C1r

Cl&ud

CL

Crq

CL a

Cm

Cmq

Cm&

Cn

Cn[_

Cnp

Cn r

Cnsnd

Cy

Cy[_

individual jet exit area, ft 2

total jet exit area, ft 2

wing span, ft

mean aerodynamic chord, ft

drag coefficient

fuselage station center of gravity, in.

waterline center of gravity, in.

rolling moment (RM) coefficient

rolling moment due to sideslipderivative, l/rad

rolling moment due to roll ratederivative, 1/rad

rolling moment due to yaw ratederivative, 1/rad

rolling moment due to rudder deflectionderivative, 1/rad

lift coefficient

lift coefficient due to pitch ratederivative, l/rad

lift coefficient due to angle-of-attackrate derivative, l/rad

pitching moment (PM) coefficient

pitching moment due to pitch ratederivative, I/rad

pitching moment due to angle-of-attackrate derivative, I/rad

yawing moment (YM) coefficient

yawing moment due to sideslip

derivative, l/rad

yawing moment due to roll ratederivative, I/rad

yawing moment due to yaw ratederivative, l/rad

yawing moment due to rudderdeflection derivative, I/rad

side force (FY) coefficient

side force due to sideslip derivative,1/rad

Cyp

Cy&ud

de

D

FY

GE

h

h/d e

IGE

L

LF

LN

MRC

PM

q

RM

RN

S

T

TLF

TIN

Ve

XMRC

YM

ZMRC

ot

side force due to roll rate derivative,

I/rad

side force due to rudder deflection

derivative, 1/rad

total equivalent circular jet diameter, ft:

de = 2._Aj,tota I / n

drag, lb

side force, Ib

ground effect

aircraft height from the bottom of thefuselage, ft

nondimensional aircraft height

in-ground effect

ground effect washout factor

lift, Ib

lift fan

lift nozzle

moment reference center

pitching moment, ft-lb

pitch rate, rad/sec

dynamic pressure, lb/ft 2

rolling moment, ft-lb

rear nozzle, same as lift nozzle

wing area, ft 2

total thrust, Ib: T = TLF + TIN

thrust of the lift fan, lb

thrust of the lift nozzles, Ib

equivalent jet velocity ratio:

Ve.j= q_/qj =_/2Ajq_/Tj

X-axis moment arm for varying CGFS,in.

yawing moment, ft-lb

Z-axis moment arm for varyingCGWL, in.

angle of attack, deg

sideslip angle, rad

PRECEDING PAGE BLANK NOT FILMED

iii

Page 4: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

5all

_canard

8flap

_rud

6_

aileron deflection angle, deg

canard deflection angle, deg

flap deflection angle, deg

rudder deflection angle, rad

equivalent jet angle, deg:

_EQ = _'(_LF) + (I - _')_LN

lift-fan nozzle deflection angle, deg

lift nozzle deflection angle, deg

_C DIGE

ACL_--,E

ACmlG E

AL/T

unpowered in-ground effect dragincrement

unpowered in-ground effect liftincrement

unpowered in-ground effect pitchingmoment increment

nondimensionalized jet-induced liftincrement

thrust split: X,= TLFfl"

iv

Page 5: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft

LOURDES G. B IRCKELBAW, WALTER E. MCNEILL, AND DOUGLAS A. WARDWELL

Ames Research Center

Summary

This report describes the aerodynamics model used in asimulation model of an advanced short takeoff and

vertical landing lift-fan fighter aircraft. The simulation

model was developed for use in piloted evaluations of

transition and hover flight regimes, so that only low speed(M - 0.2) aerodynamics are included in the mathematical

model. The aerodynamics model includes both the power-

off aerodynamic forces and moments and the propulsion

system induced aerodynamic effects.

Introduction

NASA Ames Research Center is participating in

technology development for advanced short takeoff andvertical landing (ASTOVL) fighter aircraft as a member

of the Joint Advanced Strike Technology (JAST) and

formerly the Advanced Research Projects Agency

(ARPA) ASTOVL program. Integration of flight and

propulsion controls is one of the critical technologies

being pursued in that program. NASA's role in thistechnical area is to participate in developing design

guidelines for integrated flight/propulsion controls,

support technology development for ASTOVL demon-

strator aircraft, and provide consultation on integrated

control design to the program contractors. Specifically,

NASA will carry out design guideline analyses for the

control system and conduct piloted simulations on theAmes Research Center Vertical Motion Simulator (VMS)

to evaluate design guidelines and to assess the merits of

contending design approaches.

The initial effort in this program was to develop a

mathematical model for simulation of a representative

ASTOVL aircraft concept. This simulation model was

used in an experiment on the VMS to gain initial

experience with control system behavior and flying

qualities for this aircraft concept. A description of the

representative ASTOVL aircraft's integrated flight/

propulsion control system, head-up display and the

propulsion system performance and dynamic response is

provided in reference I. This report describes the repre-sentative aircraft's subsonic, power-off aerodynamics and

jet-induced aerodynamics in hover and forward flight,

including ground effects.

Description of the ASTOVL Lift-FanAircraft

The representative ASTOVL lift-fan aircraft is a single-

place, single-engine fighter/attack aircraft, featuring awing-canard arrangement with twin vertical tails, as

shown in figure I. Geometric characteristics of the

configuration are summarized in table 1; mass properties

are specified in table 2.

The propulsion system concept is presented in figure 2.

It consists of a remote lift fan coupled to a lift cruise

turbofan engine to permit continuous transfer of energy

from the lift cruise engine to the lift fan. The lift cruise

engine exhaust is either ducted aft to a thrust deflecting

cruise nozzle in conventional flight, or diverted to two

deflecting lift nozzles in vertical flight. Throughouttransition flow can be continuously transferred betweenthe cruise and lift nozzles. Lift-fan and lift-nozzle thrust

can be deflected from 45 to 100 deg below the aircraftwaterline. The cruise nozzle can be deflected +20 deg

vertically.

The basic flight control system consists of the canard,ailerons, and twin rudders for aerodynamic effectors

during forward flight. For powered-lift operation, controlis provided by differential thrust transfer between the liftfan and lift nozzles, deflection of lift-fan and lift-nozzle

thrust, and deflection of cruise-nozzle thrust. Pitch control

is achieved by a combination of canard deflection, thrusttransfer between the lift fan and lift nozzles, and deflec-

tion of the cruise nozzle. Roll control is produced by theailerons and differential thrust transfer between the lift

nozzles. Yaw control is derived from the combination of

rudder deflection, differential lift-nozzle deflection, and

lateral lift-fan thrust deflection. As an option, reaction

control, powered by the engine compressor bleed air, can

provide additional control moments through nozzleslocated in the wing extremities and in the tail. Longi-

tudinal acceleration is achieved through thrust transfer

between the lift fan, lift nozzles, and cruise nozzles and

by deflection of the lift-fan and lift-nozzle thrust.

Page 6: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Aerodynamics Model

The aerodynamics model includes both the power-off

aerodynamic forces and moments and the propulsion

system induced aerodynamic effects. The simulation

experiment focused .on transition and hover flight

regimes, so that only low-speed (M - 0.2) aerodynamicsare included in the mathematical model.

The power-off aerodynamics data were generated usingthe U.S. Air Force Stability and Control Digital

DATCOM program (ref. 2) and a NASA Ames in-house

graphics program called VORVIEW (no reference

available) which allows the user to easily analyze

arbitrary conceptual aircraft configurations using the

VORLAX program (which is based on the vortex lattice

method of ref. 3). All the power-off coefficients and

derivatives were calculated in the stability axes. The jet-

induced data were generated using the prediction methods

of references 4-8. For the data shown in this report, the

moment reference for Digital DATCOM was 30.889 ftaft of the nose, the moment reference for VORVIEW/

VORLAX was 31.204 ft aft of the nose (-10 percent of

the mean aerodynamic chord), and the moment reference

for the jet-induced effects was 31. I I ft aft of the nose. Inthe final simulation model, these data were all transferred

to a moment reference center of 31.11 ft.

Due to certain Digital DATCOM limitations, some

derivatives required special treatment because of the

canard configuration. For the 6t derivatives, CL_ t and

Cmc t , DATCOM methods do not exist for a ratio offorward-surface span to aft-surface span less than 1.5. To

satisfy this requirement, the aft surface was truncated to a

span just less than two-thirds that of the canard. This was

considered a better choice than assuming the derivativeswere zero.

Also, the digital DATCOM program had no provision for

directly calculating the effects of deflected rudders. The

rudder effectiveness derivatives, Cyril, C Is_, andCn8 _ , were calculated by replacing the wing and canardwith an aft horizontal surface with exposed geometryidentical to that of the vertical tails and attached to a

radically slimmed body. At zero angle of attack, the

trailing-edge surfaces were deflected differentially, as

ailerons would be, and the change in rolling momentcoefficient was calculated. The same surfaces were

deflected symmetrically to generate changes in the lift

coefficient and the pitching moment coefficient, which

were converted to side force and yawing momentcoefficients, respectively. All coefficients were calculated

using the normal wing (aft lifting surface) reference

geometry.

The unpowered in-ground effects, ACLtGE, ACDIGE, and

ACmlGE, were calculated by Digital DATCOM asfunctions of angle of attack for a height of 6 ft at the wing

25 percent mean aerodynamic chord. For this purpose, the

configuration consisted of only the wing and regular(unslimmed) body.

The longitudinal aerodynamics terms are discussed nextand are followed by the lateral directional terms.

Longitudinal Aerodynamics

Lift- The lift equation for the lift-fan model is shown in

equation !. The first term in this equation represents thepower-off lift, and the second term represents the lift

increment due to jet-induced effects.

aLTL = CL_S + (i)T

The equation for CL is shown in equation 2. Lift curves

for CL(0t, 8flap) and C L(Ct, 8canard) are shown in

figures 3 and 4, respectively. The curves shown in

figures 3 and 4 were generated using the vortex-lattice

program previously mentioned. Digital DATCOM was

used to predict the pitch rate derivative, CLq= 0.746/rad,and the CL¢i (0t) curve, shown in figure 5. DigitalDATCOM was also used to predict the lift coefficient

increment due to the influence of the ground plane,

ACLIGE(O0, shown in figure 6, as well as the groundeffect washout factor, KGE, shown in figure 7.

CL = CL(IX'Sflap) + ACLScanard + CLq 21_n

(2)

+C L. (Or) O_C + (Or)ct 2U B KGEACLIGE

where

ACLficanard = CL(t_,Scanard)

- C L (ft., 5canard = 0 °)

The expression for the jet-induced lift increment, Alfr,

is presented in equation 3. Note that the lift fan and liftnozzle terms use their respective nozzle angles, 8, and

velocity ratios, V e. However, the fountain term uses the

aircraft's equivalent nozzle angle and velocity ratio.

(2a)

2

Page 7: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

-- = ,_LF, Ve,LFT :ALF

Figures 8-11 show the jet-induced lift increment due to

the lift fan for nozzle angles of 90, 75, 60, and 45 deg,

respectively. Figures 12-15 show the jet-induced lift

increment due to the lift nozzles for angles of 90, 75, 60,

and 45 deg, respectively. Figures 16--19 show the jet-

induced lift increment due to the fountain for equivalent

(lift fan and lift nozzle, 8EQ) angles of 90, 75, 60, and

45 deg, respectively.

Drag- The drag equation for the lift-fan model is shown

in equation 4. This equation accounts only for the power-

off drag.

D = CD _ S (4)

The equation for CD is shown in equation 5. Drag curves

for C D (_, 8flap) and C D (_, 8canard) are shown in

figures 20 and 21, respectively. The curves shown in

figures 20 and 21 were generated using the vortex-lattice

program. Digital DATCOM was used to predict the drag

coefficient increment due to the influence of the ground

plane, ACDIGE(OQ, shown in figure 22.

C D = CD(a, Sflap) + ACD_canar d

where

+ KGEACDIGE (or)

(5)

ACD&zanard = CD(Ot,8canard)

(5a)

- CD(Ot, 8canard = 0 °)

Pitching moment- The pitching moment equation for the

lift-fan model is shown in equation 6. The first term in the

equation represents the power-off pitching moment, the

second term represents the jet-induced pitching moment

increment, and the remaining terms account for center-of-

gravity (e.g.) travel.

PM = Cm_SE +APMTdeTd e

+ (Lcosot+ Dsino0XMR C (6)

+ (Lsin c_- D coso0ZMR C

The equation for C m is shown in equation 7. Pitching

moment curves for Cm (or, 8flap) and Cm (or, 8canard) are

shown in figures 23 and 24, respectively. The curves of

figure 23 were generated using the vortex-lattice program.

The curves shown in figure 24 were generated using

Digital DATCOM. DATCOM was also used to predict

the pitch rate derivative, Cmq = -l.589/rad, the curve for

Cm6 c (_), shown in figure 25, and the pitching moment

coefficient increment due to the influence of the ground

plane, ACmlGE(ff.), shown in figure 26.

qE

C m = Cm(Ot, Sflap)+ ACm_canar d +Cmq 2"_--B

where

6t_

+ C ma (°Q 2-'_B + KGEACmlGE (Oc)

(7)

ACm&zanard = C m (_, 8canard)(7a)

- Cm(O_, 8canard = 0 °)

The expression for the jet-induced pitching moment

increment, AF'M/Tde, is presented in equation 8.

APM VAPM( h 1]• VeI . F

LTde _-de :JLN

FAPM( h )]+/_/--,_EQ, VEQL TOe k,de Fount

Figures 27-30 show the jet-induced pitching moment

increment due to the lift fan for nozzle angles of 90, 75,

60, and 45 deg, respectively. Figures 31-34 show the

jet-induced pitching moment increment due to the lift

nozzles for angles of 90, 75, 60, and 45 deg, respectively.

Figures 35-38 show the jet-induced pitching moment

increment due to the fountain for equivalent (lift fan

and lift nozzle, 5130) angles of 90, 75, 60, and 45 deg,

respectively.

Lateral Directional Aerodynamics

The Digital DATCOM program was used to predict most

of the lateral directional stability derivatives. The static

derivatives, Cyfl, Cii _, CnB, were obtained for the complete

aircraft configu'ratioh by a'dding the individual airframe

components: body, wing, canard, and vertical tails, a

procedure which assumed the absence of interference.

Page 8: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Side force-- The side force equation is shown in

equation 9, and the expansion of the power-off side force

coefficient is presented in equation 10.

FY = Cy _ S (9)

Cy = Cyl3 (_)_ + Cyp (0 0 2-_B(10)

+ CySrud 8rud + Cy (a, 8all)

Digital DATCOM was used to predict the side force

coefficients for C y13(c0 and C yp(or); these curves areshown in figures 39 and 40, respectively. Digital

DATCOM was used to predict the rudder derivative:

Cy_t_l = 0.2063/rad. The side force coefficient due to

aileron deflection, Cy (_ Sail), is shown in figure 41and was generated using the vortex-lattice program.

Rolling moment- The rolling moment equation is shown

in equation 1 t. The first term accounts for the power-off

rolling moment, the second term represents the jet-

induced rolling moment increment, and the third termaccounts for c.g. travel.

RM = CI_Sb +ARMTde+FYZMRC (11)Td e

The equation for CI is presented in equation 12. DigitalDATCOM was used to predict the rolling moment

coefficients for CI[_(_ ), C 1 (o0, C Ir (_), and Clsmd (00;these curves are shown in _gures 42-45, respectively.

The rolling moment coefficient due to aileron deflection,

CI (_ Sail), is shown in figure 46 and was generated

using the vortex-lattice program.

CI = Ci_ (°0_ + CIp (°0 2_B + Clr (°0 2"_B (12)

+ C 18rud (ct)Srud + C I(¢X,8ail)

The jet-induced rolling moment increment, ARM/Tde,

was predicted using the methods of reference 5, and is

presented in equation 13. The prediction for rollingmoment assumes that the effects of i_ are linear and

should therefore be limited to 13< 10 deg. Predictions for

jet-induced rolling moment per degrees of sideslip in-ground effect could not be predicted; however, out-of-

ground effect numbers were better defined. Therefore,

only out-of-ground effect rolling moments due to sideslip

were calculated and were assumed height independent.

Td e = _ _-'_, LF, e,LF [3L e_ \ e ] JLF

+(13)

L Tde kde J JFo-nt

Figures 4"/-50 show the jet-induced rolling momentincrement due to the lift fan for nozzle angles of 90, 75,

60, and 45 deg, respectively. Figures 51-54 show the jet-induced rolling moment increment due to the lift nozzles

for angles of 90, 75, 60, and 45 deg, respectively. Sinceonly out-of-ground effects were accounted for, and since

the fountain is only felt in-ground effect, the fountaincontribution was zero.

Yawing moment- The yawing moment equation is

shown in equation 14. The first term accounts for the

power-off yawing moment and the second term accounts

for e.g. travel. The jet-induced yawing moment incrementcould not be predicted very well, but it was assumed to be

small, and therefore neglected.

YM = C n_Sb +FYXMR C (14)

The equation for Cn is presented in equation 15. DigitalDATCOM was used to predict the yawing moment

coefficients for C nl_(°0' C np (_), C n r (°0' and C n6axt(o0;these curves are shown in figures 55-58, respectively.

The yawing moment coefficient due to aileron deflection,

Cn (or, Sail), is shown in figure 59 and was generated

using the vortex-lattice program.

Cn = Cnl3(o0_+Cnp(Ot ) 2uBPb +Cnr(002._ B (15)

+ Cn&ud (c08rud + C n (a, Sail)

Conclusions

This report describes the aerodynamics model used in asimulation model of an advanced short takeoff and

vertical landing lift-fan fighter aircraft. The simulation

model was developed for use in piloted evaluations of

transition and hover flight regimes, so that only low speed(M - 0.2) aerodynamics are included in the mathematical

model. The aerodynamics model includes the power-off

aerodynamic forces and moments and the propulsion

system induced aerodynamic effects, including groundeffects.

Page 9: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

The power-off aerodynamics data were generated

using the U.S. Air Force Stability and Control DigitalDATCOM program and a NASA Ames in-house graphics

program called VORVIEW which allows the user to

easily analyze arbitrary conceptual aircraft configurations

using the VORLAX program. The jet-induced data were

generated using the prediction methods of R. E. Kuhn

et al., as referenced in this report.

References

1. Chung, W. W. Y.; Borchers, P. F.; and Franklin,

J. A.: Simulation Model of the Integrated

Flight/Propulsion Control System, Displays, and

Propulsion System for an ASTOVL Lift Fan

Aircraft. NASA TM-108866, Apr. 1995.

2. Williams, J. E.; and Vukelich, S. R.: The USAF

Stability and Control Digital DATCOM;Volumes I, II, and III. AFFDL-TR-79-3032,

Apr. 1979.

3. Miranda, L. R.; Elliot, R. D.; and Baker, W. M.:A Generalized Vortex Lattice Method for

Subsonic and Supersonic Flow Applications.NASA CR-2865, Dec. 1977.

4. Kuhn, R. E.; Stewart, V. R.; and Wardwell, D. A.:

Estimation of Lift and Pitching Moment Induced

on Jet STOVL Aircraft Hovering In Ground

Effect. WL-TR-93-3046, Flight Dynamics

Directorate, Wright Patterson Air Force Base,

Ohio, Aug. 1993.

5. Kuhn, R. E.: An Engineering Method for Estimatingthe Lateral/Directional Characteristics of

V/STOL Configurations in Transition. NADC

81031-60, Naval Air Development Center,Warminster, Pa., Feb. 1981.

6. Stewart, V. R.; and Kuhn, R. E.: A Method for

Prediction of the Aerodynamic Stability andControl Parameters of STOL Aircraft Config-

urations; Volume II: STOL Aerodynamic

Stability and Control Estimation Methods.AFWAL-TR-87-3019, vol. II, secs. 4 and 14,

Flight Dynamics Laboratory, Wright PattersonAir Force Base, Ohio, June 1987.

7. Stewart, V. R.; and Kuhn, R. E.: A Method for

Prediction of the Aerodynamic Stability andControl Parameters of STOL Aircraft Con-

figurations; Volume III: General Backup

Information, Derivation, and Verification.AFWAL-TR-87-3019, vol. III, secs. E, H,

and K, Flight Dynamics Laboratory, WrightPatterson Air Force Base, Ohio, June 1987.

8. Henderson, C.; Clark, J.; and Walters, M.: V/STOL

Aerodynamics, Stability & Control Manual

(Supplement 1). NADC 80017-60, NAVAL Air

Systems Command, Department of the Navy,

Washington, D.C., Jan. 1983.

Page 10: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Wing

Canard

Verticaltail(each)

TableI. Aircraftgeometry

OveralllengthOverallheight

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading-edge sweep

Trailing-edge sweep

Airfoil

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading-edge sweep

Trailing-edge sweep

Airfoil

Area

Span

Mean aerodynamic chord

Aspect ratio

Leading-edge sweep

Trailing-edge sweep

Airfoil

55.4 ft

14.16 ft

523.3 ft 2

36.17 ft

18.42 ft

2.50

40.0 deg

30.0 deg

NACA 64A005

243.1 ft2

24.65 ft

12.55 ft

2.50

40.0 deg

30.0 deg

NACA 64A004.5

39.0 f12

6.98 ft

7.11 ft

1.25

40.0 deg

30.0 deg

NACA 64A004.5

Table 2. Mass properties

Weight

x c.g. location

y c.g. location

z c.g. location

Pitch moment of inertia

Roll moment of inertia

Yaw moment of inertia

Product of inertia

30,000 lb

373.3 in.

0.0 in.

96.0 in.

91,200 slug-ft 2

14,300 slug-ft 2

101,000 slug-ft 2

0 slug-ft 2

Page 11: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Figure 1. ASTOVL lift-fan aircraft

Page 12: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Lift Fan

I I

I II I

Lift FanNozzle

Lift-Cruise Engine2D-CD Nozzle

• a I _"- i i • r

Lift Nozzles _

Figure 2. Propulsion system configuration

Page 13: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

O

00

%_M

1

Flap = 45 °

-0.8. 1' T-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 3. Lift coefficient for various flap deflections, M = 0.2

9

Page 14: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

,I,,,#

It)° ,,,,,I

¢9

ID

,.d

1.!

it

-0.3, j •

¢"-0.6 7"

-10 -5 0 5 10 15

Alpha, deg

A

canard = 10 °

canard = 0°

canard = -10 °

canard = -20 ° -

canard = -30 °

20 25 30

Figure 4. Lift coefficient for various canard deflections, M = 0.2

10

Page 15: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

CL ° , 1rad

O.&

-0.4'-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 5. Lift coefficient due to angle-of-attack rate

A C L IGE

0.10.

0.05'

0.00 /

-0.05 / r

-0.10

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 6. Lift coefficient increment due to ground plane influence

11

Page 16: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

K GE

1.0t

0._'t

0.6' _

0.4_ _._ _ •

, \0.2_

0.0

o 10 15 20 25 30 35 40 45

Gear height, ft

Figure 7. Power-off ground effect washout factor

12

Page 17: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

I I I a i

MIV

"_ II

°_

o_

"Z',%h,

13

Page 18: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o

r-.H

• 0 0 0 0 0 0 li II II II il II

............ __NN

"_ II II II II II II II II II II II II II___ 1::>1:>1:>l::>::> 1::>;> 1:>1> 1::>> 1:>1>

: : , _ ' ' i .

'. : , , i ./,::./,1//,,. _il_::........r_;_-_-T_-_T_._-_T_.._-_-_._-_-_ ...........,_................__I"' , _ _ 'I , i iil,i:'i • :i ' i ,I i i -_,_,_ _l _ _ _ : _

!1::::::,i'. :i : i., ! ii ':! ' i I 'i ' i i i i iil:ii, li, li :li] _'_!:.', .......... i..... I...........',:............... - ............... _.................".................i.................i.............. _ =ii_:i"l_. Ii !T ir, i i i i T -_il(i', i , ,i ;I i ,, i i i ! -I _

iF.:'. ,i ' .i :1 i '1 i i i i _'=,ti. _' :_. i : ) i _ _ :z'_

,_..i_.._........_;...........:..-..............;:;...............................................,................._................-__ __I'_ ,_ ' ,_ _I _ii,,, i -,_i li i-,, i i i ii_'_i _ ' _ i1':q i i i i_!,,l/.,i,::" ! I 'I ' ! ; ! _ _ :

,'.... ,'.... ,'.... ,'.... 1.... 1.... I.... i"" °

e = e =" e = =" e ei i t l i i

14

Page 19: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o _C_. _ _ E:_ _ ___ _ _ _ "" "-q _ c:::; _ E:; _:__=_11li il li il il_ t LT.,, LT. _L,, L.T..,L.T.._(.T.,,

tL It L,T.. [..T. (..l. [.._ L.T,_LT-I ,_.) ,.q ,,j t.j ,.J ,.J

(,<E _ _ _ _ _ _ _;>.;;;,,.;:>.;:>.;:>.;::>,._ ::> :>. ::>.::>.;:>. :> ............

II II II II II II II II II II II II II

> :> ;:> :> ;> :> ;> :> ::> :> :> ::> ;>Z i , a l I ! I I I I i

i : : • I ' ' ' '

a : : , ' I ,

iIii...........ii........i.......i.........iiii............................................1:::::' i, ! i_ ,i i i '_ i _°

' _ ' , _. ! i i ! iili.: i, i il ,_i i i i i _

i_ii', i' ' il ,ll ,:._:i-'-----,......i........._-.-----i+.........,---!................._................._.................i................._..............._

L :' " i

il , i "= "_"I !' I

. i0 , ,I .-..

':_....=_" _.....,_ ......................................................................................i _il_:' !, u ;I ,1 i i ] i ] ,L_

i ,',',', i' : • , ! " : i ! "i ,',',' '.:1 , i .J! : : _ _

_---------------i.........._ :'_._............i................._................._................._................._................_ _.-_

I,,,,I,,,,I .... I .... I .... I .... I .... I ....I I i I I I I I

,L/IV

15

Page 20: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

v_ --:.oooooo i , 0I t_ II It_ II It il tl It it _ _ [4.., IT. [.,,T.

H II II II li II II II II II II II II;> ;> ;>, ;> ;:> ;:> ;:> ;:> ;> ;> ;> ;>- ;:>

z /,::', ./ , '

i : : , ' i ,/, :: /,1//I, _.• ;"'T'":"']". ''....-'T ...... ;1................:'"'"""'"'"'"__ .................. _................. i.'..'._ .......... +............. _

I: ! ! :1 :, ', i i _ "_,,|]: ' '. I :1I:_ -i _ _

':qj_, , i , i,l i :: i :: i _ _:

t'--.t----i-.-i--'.------._-.----!-:..............-................_...................................................................-r- -_ _" t "-|'.:[ ,i: .I i,i / _t.'i: ' '_1 li'l _ ""&a_ii ._ _._l_i'r , i: _ ._,,,,,._

'i,, _'_

-'_..m_......................................................................................................_ _ ._• _,,_

? i: i,I

..............i', ._ . ................ . ................ ._................. _................. _................ V'_ [,,T,.

, .... , .... ,i.... , .... 1.... ',.... 1.... 0I I I

I I I I I I I I

JJ'-l_

]6

Page 21: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

.... I .... I .... I .... I ........ I .... I ....I I I I I 1

I I I I I I I I

N

"" II

°_

°_

17

Page 22: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0000000 ......

_1 II 0 II II II 11 II _ Z Z _ Z 7'

__ .>_..> > > > > ._._._._._ ._

"_ II II II II II II II II II II II II II

/ ', i i '. : : '. t ' ' ', '.

/,: :./,1//I,.

iI I ',,: i i i i "_

i..._..._..,...._.._..--i--i................i.................i.................i.................i.................i..............._ _if..: I _ ',i: i i i i i _

_'_, I'?:_._ _ _ _ _ __

, , ,[_1: t it ,_,i_ i i _ i i ._ _,..i ' i _!' i :: i i

i! , ! i i

i ,i, i i _ ! i :_-........,.._,..,-....,.._e............._.................-................i.................!.................i...............

I,,,,I,*,,I_,,I ,,,,l,,,,l,_,,l,,,,l,,i_ 0I I I I 1 I I I

l I l I I I I I

..L./'IV

18

Page 23: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

II

e,,.<

NN0Z

0

o.

>

ooooooododdd

II II II II II II Z Z Z Z Z ZZZZZZZ____ gdg dddggg ggg))))))

............ _N_NN

0 _00 O00_ _ _0

II II II II II II II II II II II_>>>>>>>>>>

......*_*t _'' l _:_,..| ........................................................................................................................

I

I

I

I

:.'._...,..._.._.........................................................................................................!

1

[]

[]

&/"IV

0

"_ II

_-__'_

19

Page 24: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

&/"IV

20

Page 25: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

._

._

°_

_'o

//qv

21

Page 26: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

........................!........................i .......................i........................i............................................

II

"'°°"

<

I I I

II II II II II I1 II II II II II II II

i:: I ] '

!

° ,.,,,,

_o

I/qV

22

Page 27: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

II ___ _ _ _ _ _

i...._ ___ooo_oo ............................. -

II II II II II II II II II II II II II>>>>>>>>>>>>>

NIQ' Itl I|1

I::.1' : I,

l:ii:/il|/,::

' i I _ _

....................... i ........................ ; ....................... _....................................

I i I I ' ' I , , i , i i i i i i i ii

°_

N

o_ ._

o_

23

Page 28: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

II

II II II II II II II II It II II II II

,: I Ii'

°'

_'_

|1| Ill II! el|Jill J|l

I

I

JJ_V

24

Page 29: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0.45. lmlFlap = -30°

-_ Flap = -15° ..................i -/

_t Flap = 0 _:

0.05" _' • .......

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 20. Drag coefficient for various flap deflections (includes CDmin), M = 0.2

25

Page 30: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o°1-1

°,-i

o0

m

0.3

0.2

0.1

0.0

I

canard= I0°D

I

":- canard= 0°

- canard= -lO°

canard = -20°

- cana_l= -30°

w

-0.05,

-10 -5 0 5 10 15 20 2S 30

Alpha, dog

Figure 21. Drag coefficient for various canard deflections, M = 0.2

26

Page 31: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

A CDIGE

0.01,

0.00-

-0.01' _

-0.02...............................,.........................................

-0.03.....

-0.05

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 22. Drag coefficient increment due to ground plane influence

27

Page 32: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

ID¢dl

E0E

°_,,i

¢k,

0.15

0.11

0.05

"0. I

-0.2

Flap = -30 °

Flap = -15 °

Nap=if'

Flap = 15°

Flap = 30 °

Flap = 45 °

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 23. Pitching moment coefficient for various flap deflections, M = 0.2

28

Page 33: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

e-

° _...q

.o

oOo

OElat)

° F,..0e-

0.20

0.15-

0.10-

0o00 o

-0.10

! canard = -30 °

canard = -20 °

+ canard =-10 °

canard = 0 °

canard = 10 °

----o--- canard = 20 °

+ canard = 30 °

-0.30

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 24. Pitching moment coefficient for various canard deflections, M = 0.2

29

Page 34: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

1Cm. , m

o_ rad

0.10"

0.05 •

O.O(Y. _/

-0.05-- L_ d

• _i-0.10'- J

-0.15"

-10 -5 0 5

/

10 15 20 25 30

Alpha, deg

Figure 25. Pitching moment coefficient due to angle-of-attack rate

0.02-

0.01'

0.00

-0.01

-0.02-

-0.03-

-10

..... y ....

/'\ ...................i!

-5 0 5 10 15 20 25 30

Alpha, deg

Figure 26. Pitching moment coefficient increment due to ground plane influence

30

Page 35: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

It

NNoZ

_ II II II II II II _ _ _ _ _ ___ g gg g d d

_g gdd dd))))))

_ II II II II II II II II II II II

0I

II

: I0! °

:t : i

:, i ' 4_

i I

t: ' I

'1: '

I

I

I

I_ I i IZ.J ............. ..L......_. ......

I

1

t

I

I

II21

I ! I I

i

...................T'1..................................................

li,i

I

I

I

iil

,il

,I

J

!.6 ...........................................................

I

I I

!

I I

i

_o

K

3]

Page 36: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0 0 0 0 0 0 II II II II II II

00

0

It _jj_ _ _ _ _

"_ "_ 0 0 0 0 0 0 0 t'_1_I- _{:)O0 0

"_ II II II II II II II II II II II II II

>>>>>>>>>>>>>z /: i i : : : :/' ' : :

_×+_i_6 , _i : : , , i ,/, : :./,1//I,.

_!:"..................--'T-:-:--IT--i '-r_''_- '_'-:'-: ........................-I-i'. !i i ,'i ',1 i i

':' ui ' ' i , i i:, ,i / .1_ I,, _ i J

;:':;...................i_ ...................._........ , .............................................,! _ I :1_ t :_ _ _ !li: , !i : li _,1 i i

_:'. i ;i / ,'i i, i i

I !i j '_1:_ i i..... .... ................................................................................._

, t . i, ,'/

I I I

_o

=: N

_g

a_"_._2_

32

Page 37: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o _ _ _ _ _ _ _ II II II II It II_ II It II II li (.,,T,,,,_ [,.T,,,.,(,.l,., 1,.1., I,.T,.,ti _ _ I,.T,,,,l.Z.,I,.T,.,[,.T.,,,..,),._ _ ,._ ,,.,)_

_>>>>'>'> ............

It It II It II II It II It It It It It

>>>>>>>>>>>>>

" " ' t " ' = '

_ : : . . _ .

. ,/,::./,1//I,.ili:i.I , _1 . l i_ i ._'.: ' ' i . i

i1,::' , t i , ,I il i ] /

..........i........................................'......................................................

_ii.,I i'i_:' t ,

_...._......_.....i._.....:

_. _I _ I ' ;

_..._...:..._

I I I

!

il

-o_-o! ..................................................................................

I I 1 I I I I I

I I I "-r

c_

_o

"7_.

o_

o(eq

33

Page 38: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

11

_0

.<

N

O

Z

o o o o oo o I_ it 11 11 11 It

_ _000000 _ _

il

, I,

I ............................................... _............................ "......................... _:1

11

o o," o _ o, -,

0_

_o

II

•_ ._,_

o_°_

"Z

34

Page 39: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o

It

q,,>

Nk',,1o

Z

0 0 0 _ 0 0 0 II II II II II il

U II II II II 11 II II II II II It II

+,., i ++ii, . ; ','............................................... ":................ "1".............

ii

i, I

...........1" ..................::i

' I:ii1 '' II '

.........• i_l

• / /

I

1¢3

°_

t,l

_o

o_

e_

35

Page 40: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

II

m

NN0

Z

zzzzz__

II It II II II II II II II II II I1 II_>>>>>>>>>>_>

I

.................................................................................i..........IT....l

,Ii

i.......................).......................TI ..............T.......i".............T

......................._......................._................_.._._........._.....,:...

I I I0 0 0 0 0

...............[I"!! .............

i, ..q.1_

• .:_

I ,:_'i! ., m 12!l.,ll(, i......-t--.......i --,'_............-_

: 'i ':;

..... .............

_......._..."i.....................

t,l

! I ! I I I I I 0

_(IJ,/l_dV

36

Page 41: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o

II

¢;,,u,,

e.,..<o

NNN0

Z

_ _ _ _ _ _ _ II II II II II II

II It II II II II II II II II U

' I '

.............................................................................................ii.......I.........T_fT_........i, Ifi, :i_ -iL !iil:il -

..............................................................................................i_................"-_ .......:i ' ,11!_ •

i: il ¶, :i

_, i5.._.._

l

................................................_............................. ...........

| I I i i i i i i i i i i i i i i i i i i i i i

c_ c_ c_ c_ c_ c_

°_lj.tl_dV

°_

.._o

°_

e_

37

Page 42: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

II

¢1.===¢NN0Z

_ _ _ _ _ _ _ II il II II II li

_ II II II II II II Z Z Z Z _ ZZZZZZZ__

o_ o_ o_ o_ o_ o_

II II II II II II II II II II II II II

°' ;°:

[]

121

.................................................................................................:......T..i..II I

' I

......................................................................................_.! _:'1

1.....

6

!

........................................................................................._...'..'....._...:121i i _

I i i i i 1 i l 1

0 0 0 0

| | I

iI,

' I I

,II2FI

,IIIN

,g_,'' 0 II'_'II2_

I I I I I I I I I I

I0 0

I -

i!

_ 0("4

w

0

00

,%

I,l1,4

II

_',_

"_._,

,4e_

_(I.IJlNdV

38

Page 43: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

O

U

t_0

Z

II II II II II II II II II II II II II

;o,:.

I I I I I I I I , i , , I 1 I l I I I I

I i i I

_(UJI_cIV

,%

°_

39

Page 44: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

t',-II

_Si===i

r,

NN

oZ

II II II II II II II II II II II II II

0

........ I .... i , ,I I

• =,.! !

_(3.lJ_d_7

i i

0c'4o

i

,%

°,,,.

N

°,,._

°_

°_

o

4O

Page 45: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

II _ _ _ _ _ _ _ _ _ _ _

II II II II II II II II II II II II II

0

0

I I

o_

o_

o_

o_

4]

Page 46: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o

II

NNNOZ

_d_dd_HHHHNH

II II II II II II II II II II II II II

........................... i.................................................................................................................

i i i x t i I i _ | I i i

I I I

_CLgI_dV

i

o_

°__a

o_

°_

o_

o_

42

Page 47: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Cy 1[3 rad

-0.345

-0.350

-0.355

-0.360

-0.365'-10

\_L .....

xa

-5 0 5 10 15 20 25

Alpha, deg

30

Figure 39. Side force coefficient due to sideslip

1

Cyp , rad

0.20-

• 7

o15- :/• I

0.10" •

/0.05 c

J

-0.05"

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 40. Side force coefficient due to roll rate

43

Page 48: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Cy

D

h.

&

Aii = 300R, -30°L

Ail =20°R, -20°1.,

Ail = 10°R, -10°L

Ail = 0°

All = -10°R, 10°L

All = -20°R, 20°I.

Ail = -30°R, 30°I.

0.0010

0.00O5

o.oooo

i- C

-0.01705"

4}.0010 ....

-10

h

L4

)-

)-==-___

- C

"- 4

_t• o , o

-5 0 5

C

,--_._.q

) (

--_'_ ....

10 15 20

_-------_ v---.---_

.__......__ .....-..-._

• ° • .

l

J

't_--

25 30

Alpha, deg

Figure 41. Side force coefficient for various aileron deflections, M = 0.2

44

Page 49: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

1

C113 md

0.05

0.00

-0.05'

-0.10

_Ita

\

-0.15

-10 _ 0 5 10 15 20 25 30

Alpha, deg

Figure 42. Rolling moment coefficient due to sideslip

C1 , 1p rad

0.05"

,

0.00" /

_0.05 _ .............. _ .............

_o.,o:....................../' ......./.

-0.15 _

-0.20- ..........

-0.2.9 __""_ :

-0.30

-10

/

-5 0 5 10 15 20 25 30

Alpha, deg

Figure 43. Rolling moment coefficient due to roll rate

45

Page 50: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

C1 , 1r rad

0.04"

0.03

0.02 _ J

/0.01 _ /

ooo"//-10 -5 0

/

/

5 I0 15

Alpha, deg

20 25 30

Figure 44. Rolling moment coefficient due to yaw rate

1

C 1_irud ' rad

0.03"

0.02 _-_

•-x_,,0.01 _

• \0.00_ _ _

-0.01 ...............

-0.02-

-10 -5 0 5 I0 15 20 25 30

Alpha, deg

Figure 45. Rolling moment coefficient due to rudder deflection

46

Page 51: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

+ All = 30°R, -30°L

All =20°R, -20°L

---O-- All = 10°R, -10°L

+ All = 0 °

- All -- -10°R, 10°L

+ All =-20°R, 20°L

All = -30°R, 30°I..

0.020

0.010

C1 o.ooo

-5 0 5 10 15 20-10 25 30

Alpha, deg

Figure 46. Rolling moment coefficient for various aileron deflections, M = 0.2

47

Page 52: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

II

,,d

,<

t,,,]t_oZ

°_ o_ °_ o_ o_ o_

ii li II ii II il ii II il il il ii

I, i I:

............................................. T...................... 'T........................................... T'{'""r"T ..........

j Ii lii :', i Ia

,]

" ,i,:

.t...,. .............. , ....................... ,_...................... _ .....................' I • ,: ,

I 'i

I .

I i II : .. ,

, I .i ,

"k":'""................................F...................."_..................:'"': : , _ ,i

:',' i li::, !

' ' i i)' ' ' I ,

_--.+........._..._..............._ ..................._.................a_,_ "I- '_ _ _

_< +_x +_X + '_

m _ I

I

• 121_

''i'"i, ,,

!

I

......................._....,i....i...........

I

?

I

: I

I

,I

I

! i

....................:.o...(..o6.........

' ii<_

I

iii

: iI I I I I I

I

I ! i

It

_:s

- _'_ t_

48

Page 53: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

II

_G

G

N

N

oZ

#

II It II II tl II II II II II li

0 _ 0 _ _ 0 II II II II II II

'_'_'_'___

i i+ii'',_,__ :_I

....i!...........i......................................................................iI......!i................................: , i t, , ' I I

i' i ,I

I , I ' I

o

0 ,

!

_..+.........., ............_.....

_+ _

i_+ ._

I iO o

cqo oo o6 c5

I

,_,*, _ _ , ._ i_ 9

ii: _i i ! ,_,_ i.:a

,::. i ' : . i

'_+T [] ",° iI'_,::. t

i i i i

0o

o

!

0

!

o

m

........i..........

i L I i

o 0",::1"o oo o

I

! I

i]

• i8l ' I

I0

0

I

II

_'_.

o_

°_

49

Page 54: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

0

II

.,,<

0Z

_000000

__ IIIIIIIII1_ _

°.°.°°

_00000

II II II II II II

...... • ...................... ! .............. ;T ........... T"

' I , I! ,:

' i , li,i

I

.....1'i.....................................................I

i

0

":"'"-.........F'"_.......................'I..............•........":..........'..........."..'............................................I:" ' i I "i ' I I I i

ili-i 11, Ii• ,I i

iEi!. i , :i :l .,I i:"+ " [] ' , i_.:........,..........,............._.........._..........._....,.,.....................................................o 0ji ,, , i ' '_ , iil_+ _ _ m _ 4 ,6i'.:. ' i . ,

._+ I_ _a m _ '_,9

i:: ,_ ,

...........¢.........'"4- i [] "

_t '_)_ ml

I

r_

s.... N

°_

°,.,_

d.

o_

50

Page 55: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

H

,.....,

$::::

NN0

Z

_ _ _ _ _ _ _ II II II II II II

_ II II II II II II _ _ _ _ _ _

111111111111111111111111

'._ <b:6,

_..._....._......._.........iii' ' 'I , I

_..-.L_.i.-.--_-.-.--_....

_._ m_

_---_-.--_-i-:-----_....

i.ilI I

I

I

,I

I

,II

I

i , i , | t * a _ i l

I i !

-- t'l

m

LI

!

_o

to

o_

51

Page 56: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

II

,<&)

t'4N0Z

_ _ _ _ _ _ It il tl li II 11

_ II II II II II II Z _ Z Z _ _ZZZZZZ__

II II II II II II II II II II

, ,,";'.': .............. I;,............................

ii:! ii::, ,i

i l _iil

...........................t :.'lil....................1................................

C'4

......,,.,,.;...............!.........-:.................................................................._;..................... ...........::, li , _'I

ii:liiI i_

iiI iiI i_:: • ; 'i '.

......_..._....._........_.............................................................................,..........._;:, _ ,- :

ii_i.-_ _ m _ "

......_...._....._.......,...........,.,...i..........._.............._........................................._.......

0 0 _ 0 0 0

0 0 0 0 0

i ! !

NN

°_

.!

°_

52

Page 57: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

o

II

NNoZ

_ _ _ _ _ _ _ II II il II II il

il it II II II If II It II II II II II

1, : i ' I I i '

I.,', ............ r ....

C:. Ii::.i::. I

IH. ' I

_::, ,_'.:, I

IH":'"'i..........*'"T........C:. I

C: ' I

I il ,, !

I

• I

't II+<:_l ,y _ ?

:I; I il

....._ 31_-<3 121

I I I I

i

iI l I I I ! I I

.... 1................... ,.............................

i

¢",.I

u")

NN

_O

it

o_o_o_

s_°_

53

Page 58: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

oc_

II

l;

N0

Z

_'_'_'_'___

II II II II II II II II II II II

,i

iI ,

I;I I _

i/I,:' , :i ! . il i l

..... It- [] ' i , il71_,_1 ......._........_...........,.............._....................................................:1, Ii / / i; i:

i ,

, , , , i , , , , , , , , , i , , , , , , , ,I I I

i i

NN

=: N

z_

,q

o

i

54

Page 59: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

0

II

t:::<

I",,1

oZ

Z__ gdd gdg

II II II II II il il II II II II II II

+ 0 ,:....l........;.........i...................................................................................

I

I ,I

I

9 _............................ + ....... i .......................................................................

I

[]

i I I I i i i i

0 o

o oo oo d

I

o o o

I

o-

J t

o

0o

!

1,.,.

=:

II

•,_ N

b'--°_ _,_

._.=

...,..6

=:° ,....

:=

55

Page 60: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

C 1m

rad

0.030'

0.025'

0.020'

0.015'

\

\0.010'

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 55. Yawing moment coefficient due to sideslip

C1

n _ m

p rad

0.01-

-0.04.

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 56. Yawing moment coefficient due to roll rate

56

Page 61: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

-0.070-

-0.075-

-0.080"

-0.085"

\\

-0.090.

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 57. Yawing moment coefficient due to yaw rate

-0.079.

-0.080.

-0.081 r

-0.082 _

-0.083

-0.084. ....

-0.085 ...... _ _ _t_

\ . .,e¢,

-0.086-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 58. Yawing moment coefficient due to rudder deflection

57

Page 62: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Cn

0.006'

n All = 30°R, -30°L

All =20°R, -20°L

Ail= 10°R,-10°L

All = 0°

-- All= dO°R, 10°L

All =-20°R, 20°L

t All = -30°R, 30%

0.004

0.000

-0.002

"0.00_ '

_.006

-10 -5 0 5 10 15 20 25 30

Alpha, deg

Figure 59. Yawing moment coefficient for various aileron deflections, M = 0.2

58

Page 63: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter

Form Approved

REPORT DOCUMENTATION PAGE OMBNO.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thiscollection of information, including suggestions tor reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 JeffersonDavis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Pr(; ect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1995 Technical Memorandum4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft

6. AUTHOR(S)

Lourdes G. Birckelbaw, Walter E. McNeill, and Douglas A. Wardwell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

505-68-32

8. PERFORMING ORGANIZATIONREPORT NUMBER

A-950051

10. SPONSORING/MONITORINGAGENCY REPORT NUMBER

NASA TM-110347

11. SUPPLEMENTARY NOTES

Point of Contact: Lourdes G. Birckelbaw, Ames Research Center, MS 237-2, Moffett Field, CA 94035-1000

(415) 604-5592

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -- Unlimited

Subject Category 02

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the aerodynamics model used in a simulation model of an advanced short takeoff

and vertical landing lift-fan fighter aircraft. The simulation model was developed for use in piloted evalua-tions of transition and hover flight regimes, so that only low speed (M - 0.2) aerodynamics are included in

the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments

and the propulsion system induced aerodynamic effects, including ground effects.

The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital

DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user

to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced

data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.

14. SUBJECT TERMS

ASTOVL, Lift fan, Aerodynamics model

17. SECURITY CLASSIFICATIONOF REPORT

Unclassified

NSN 7540-O1-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATIONOF ABSTRACT

15. NUMBER OF PAGES

6316. PRICE CODE

A04

20. LIMITATION OF ABSTRAC1

Standard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z39-1e

Page 64: Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft · NASA Technical Memorandum 110347 Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft Lourdes G. Birckelbaw, Walter