aerodynamic attitude control in very low earth orbit · 1.5 1 0-1 100 50 0-50 [deg] 80 40 0-40...

1
A e r o d y n a m i c A t t i t u d e C o n t r o l i n V e r y L o w E a r t h O r b i t PhD Researcher: Miss Sabrina Livadiotti Supervisors: Dr Peter Roberts, Dr Nicholas Crisp Revolutionizing Earth Observation with sustained operations at lower altitudes than the current state of the art. Robustness - Inertia matrix Possible applications Assumptions Applied control strategies Proposed manoeuvres Geometry - SOAR Background Results Aerodynamic Pointing & Trim : Pitch & Yaw Aerodynamic Momentum Management Aerodynamic Pointing & Trim : Roll 1. Discrete time domain implementation; 2. Environmental disturbances; 3. Accommodation coecients linearly varying with altitude (0.9 to 1) - Sentman model; 4. Horizontal thermospheric winds; 5. Panels deection rates: 30°/s; 6. Gyroscopes attitude error knowledge: standard deviation 1σ; 7. Disturbance introduced on total angular momentum by rotating panels; 8. Software limitations. 1. Small satellites: aerodynamic control to support pointing tasks when the control authority provided by conventional actuators is reduced; 2. To perform target acquisition below 250 km, where the control eort required is demanding and RWs saturate quickly; 3. To perform the momentum management task without interrupting the pointing task; 4. To counteract the perturbation introduced in yaw by atmospheric co-rotation, reducing RWs eort; 5. To achieve aerodynamic rejection of the environmental disturbances aecting the satellite. Aerodynamic momentum management Aerodynamic pointing & trim Modied PID & intelligent integrator [1,2] Linear quadratic regulator 1. Aerodynamic roll control combined with reaction wheels (RWs) pitch & yaw control; 2. Aerodynamic pitch & yaw control combined with RWs roll control; 3. Aerodynamic trim; 4. Management of the angular momentum stored in the RWs by means of aerodynamic torques. 1. 3U CubeSat main body; 2. Aerostable feathered conguration; 3. Aerodynamic control panels extending at the rear of the satellite main body. The enhanced aerodynamic environment experienced by satellites in VLEO (i.e. below 450 km) oers the opportunity to investigate the feasibility of exotic strategies employing aerodynamic torques to perform attitude control tasks. C h a l l e n g e s 1. Density & thermospheric winds estimation; 2. Gas-surface interaction uncertainties; 3. Aerodynamic control authority variations with altitude; 4. Control law robustness; 5. Hardware & software limitations. [1] H. Bang, M. J. Tahk, H. D. Choi, "Large angle attitude control of spacecraft with actuator saturation", Control Eng. Pract., vol. 11, no. 9, pp. 989-997, 2003. [2] B. Wie, H. Weiss, A. Arapostathis, "Quaternion feedback regulator for spacecraft eigenaxis rotations", J. Guid. Control Dyn. 12, pp. 375-380, 1989, doi: 10.2514/3.20418. [3] F. L. Markley and J. L. Crassidis, "Fundamentals of spacecraft attitude determination and control", 2014. [4] D. A. Vallado and W.D. McClain, "Fundamentals of Astrodynamics and Applications", New York, McGraw-Hill Companies Inc., 1997. [Background] Giacomo Balla, "Mercury passing before the Sun", 1914, 120 x 100 cm, Oil Painting, Peggy Guggenheim Collection (on long-term loan), Venezia The DISCOVERER project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No 737183. Discaimer: this works reflects only the views of the authors. The European Commission is not liable for any use that may be made of the information contained therein. Body Angular Rates Reaction Wheels Torque Y Panels Orientation [deg] [Nm] Time [min] Z Panels Orientation LVLH Attitude 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 100 -100 0 [deg] 100 -100 0 [deg] 1 0.5 -0.5 -1.5 x10 -5 [deg/s] 0.2 0 -0.2 -0.4 10 0 -10 0 -1 50 50 -50 -50 Modied PID: Nominal Case Modied PID: O-Nominal Case Regular PID: Nominal Case Regular PID: O-Nominal Case Time [min] Time [min] Time [min] Time [min] [deg] [deg] [deg] [deg] 20 15 10 5 0 -5 -10 -15 -20 0 5 10 15 20 20 15 10 5 0 -5 -10 -15 -20 20 15 10 5 0 -5 -10 -15 -20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 200 150 100 50 -50 -100 -150 -200 [ kg m 2 . I = 0.1275 0.0001 0.003 0.0001 0.1266 0 0.003 0 0.1866 [ 0 [ kg m 2 . I = 0.057 0 0 0 0.074 0 0 0 0.074 [ [ kg m 2 . I = 0.057 0 0 0 0.074 0 0 0 0.074 [ [ kg m 2 . I = 0.1275 0.0001 0.003 0.0001 0.1266 0 0.003 0 0.1866 [ 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 [deg] [Nms] [deg/s] 40 20 0 -20 -40 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 2 0 -1 -2 Reaction Wheels Angular Momentum Body Angular Rates LVLH Attitude 1 Time [min] x10 -3 No Momentum Management Reaction Wheels Angular Momentum LVLH Attitude Z Panels Orientation Y Panels Orientation [deg] [deg] [Nms] 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 Time [min] 0 10 20 -10 -20 x10 -3 1.5 1 0 -1 100 50 0 -50 [deg] 80 40 0 -40 0.5 -0.5 -1.5 60 20 -20 With Momentum Management LVLH Attitude Body Angular Rates Reaction Wheels Torque Y Panels Orientation Z Panels Orientation Time [min] [deg] [deg/s] [Nm] 6 8 10 12 14 16 18 20 0 2 4 0 -40 0.5 0 -0.5 1 0 -1 x10 -5 [deg] 100 0 -100 [deg] 100 0 -100 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 -20 0.5 -0.5 50 50 -50 -50

Upload: others

Post on 19-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Aerodynamic Attitude Control in Very Low Earth Orbit · 1.5 1 0-1 100 50 0-50 [deg] 80 40 0-40 0.5-0.5-1.5 60 20-20 With Momentum Management LVLH Attitude Body Angular Rates Reaction

Aerodynamic Attitude Control in Very Low Earth OrbitPhD Researcher: Miss Sabrina LivadiottiSupervisors: Dr Peter Roberts, Dr Nicholas Crisp

Revolutionizing Earth Observation with sustained operations at lower altitudes than the current state of the art.

Robustness - Inertia matrix Possible applicationsAssumptions

Applied control strategies

Proposed manoeuvres

Geometry - SOAR

Background Results

Aerodynamic Pointing & Trim : Pitch & Yaw

Aerodynamic Momentum Management

Aerodynamic Pointing & Trim : Roll

1. Discrete time domain implementation;2. Environmental disturbances;3. Accommodation coefficients linearly varying with altitude (0.9 to 1) - Sentman model;4. Horizontal thermospheric winds; 5. Panels deflection rates: 30°/s;6. Gyroscopes attitude error knowledge: standard deviation 1σ;7. Disturbance introduced on total angular momentum by rotating panels;8. Software limitations.

1. Small satellites: aerodynamic control to support pointing tasks when the control authority provided by conventional actuators is reduced;2. To perform target acquisition below 250 km, where the control effort required is demanding and RWs saturate quickly;3. To perform the momentum management task without interrupting the pointing task;4. To counteract the perturbation introduced in yaw by atmospheric co-rotation, reducing RWs effort; 5. To achieve aerodynamic rejection of the environmental disturbances affecting the satellite.

Aerodynamic momentum managementAerodynamic pointing & trim

Modified PID & intelligent integrator [1,2] Linear quadratic regulator

1. Aerodynamic roll control combined with reaction wheels (RWs) pitch & yaw control;

2. Aerodynamic pitch & yaw control combined with RWs roll control;

3. Aerodynamic trim;

4. Management of the angular momentum stored in the RWs by means of aerodynamic torques.

1. 3U CubeSat main body;2. Aerostable feathered configuration;3. Aerodynamic control panels extending at the rear of the satellite main body.

The enhanced aerodynamic environment experienced by satellites in VLEO (i.e. below 450 km) offers the opportunity to investigate the feasibility of exotic strategies employing aerodynamic torques to perform attitude control tasks.

Challenges 1. Density & thermospheric winds estimation;2. Gas-surface interaction uncertainties;3. Aerodynamic control authority variations with altitude;4. Control law robustness;5. Hardware & software limitations.

[1] H. Bang, M. J. Tahk, H. D. Choi, "Large angle attitude control of spacecraft with actuator saturation", Control Eng. Pract., vol. 11, no. 9, pp. 989-997, 2003. [2] B. Wie, H. Weiss, A. Arapostathis, "Quaternion feedback regulator for spacecraft eigenaxis rotations", J. Guid. Control Dyn. 12, pp. 375-380, 1989, doi: 10.2514/3.20418.[3] F. L. Markley and J. L. Crassidis, "Fundamentals of spacecraft attitude determination and control", 2014.

[4] D. A. Vallado and W.D. McClain, "Fundamentals of Astrodynamics and Applications", New York, McGraw-Hill Companies Inc., 1997.

[Background] Giacomo Balla, "Mercury passing before the Sun", 1914, 120 x 100 cm, Oil Painting, Peggy Guggenheim Collection (on long-term loan), Venezia

The DISCOVERER project has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No 737183.

Discaimer: this works reflects only the views of the authors. The European Commission is not liable for any use that may be made of the information contained therein.

Body Angular Rates

Reaction Wheels Torque

Y Panels Orientation

[deg

][N

m]

Time [min]

Z Panels Orientation

LVLH Attitude

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

100

-100

0

[deg

]

100

-100

0

[deg

]1

0.5

-0.5

-1.5

x10-5[d

eg/s

]

0.2

0

-0.2

-0.4

10

0

-10

0

-1

50

50

-50

-50

Modified PID: Nominal Case Modified PID: Off-Nominal Case

Regular PID: Nominal Case Regular PID: Off-Nominal Case

Time [min]Time [min]

Time [min] Time [min]

[deg

]

[deg

]

[deg

]

[deg

]

20

15

10

5

0

-5

-10

-15

-200 5 10 15 20

20

15

10

5

0

-5

-10

-15

-20

20

15

10

5

0

-5

-10

-15

-200 5 10 15 20

0 5 10 15 20

0 5 10 15 20

200

150

100

50

-50

-100

-150

-200

[

kg m2.I = 0.1275 0.0001 0.0030.0001 0.1266 0 0.003 0 0.1866[

0

[

kg m2.I = 0.057 0 0 0 0.074 0 0 0 0.074[

[

kg m2.I = 0.057 0 0 0 0.074 0 0 0 0.074[ [

kg m2.I = 0.1275 0.0001 0.0030.0001 0.1266 0 0.003 0 0.1866[

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

[deg

][N

ms]

[deg

/s]

40

20

0

-20

-40

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

2

0

-1

-2

Reaction Wheels Angular Momentum

Body Angular Rates

LVLH Attitude

1

Time [min]

x10-3

No Momentum Management

Reaction Wheels Angular Momentum

LVLH Attitude

Z Panels Orientation

Y Panels Orientation

[deg

][d

eg]

[Nm

s]

100 1200 20 40 60 80

100 1200 20 40 60 80

100 1200 20 40 60 80

100 1200 20 40 60 80

Time [min]

0

10

20

-10

-20

x10-31.5

1

0

-1

100

50

0

-50

[deg

]

80

40

0

-40

0.5

-0.5

-1.5

60

20

-20

With Momentum Management

LVLH Attitude

Body Angular Rates

Reaction Wheels Torque

Y Panels Orientation

Z Panels Orientation

Time [min]

[deg

][d

eg/s

][N

m]

6 8 10 12 14 16 18 200 2 4

0

-40

0.5

0

-0.5

1

0

-1

x10-5

[deg

]

100

0

-100

[deg

]

100

0

-100

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

6 8 10 12 14 16 18 200 2 4

-20

0.5

-0.5

50

50

-50

-50