advises of dynamic soil properties review to define curves ...4. /llindis power company ~q) 3...

8
4 . , , /LLINDIS POWER COMPANY ~q 3 z32_33y_g ) 500 SOUTH 27TH STREET, DECATUR, ILLINOIS 62525 December 31, 1981 on 9 Mr. James R. Miller, Chief Standardization & Special Projects Branch ( RECEIVED Division of Licensing Office of Nuclear Reactor Regulation 93 JAN 4 1982> I2 ' U. S. Nuclear Regulatory Commission - Washington, D. C. 20555 ( ugemny % nn 1 Dear Mr. Miller: 4 9 W Clinton Power Station Unit 1 Docket No. 50-461 In the course of developing responses to NRC's request for information on seismic soil-structure interaction analysis, including soil properties variation, a review of the dynamic soil properties was undertaken. The goal of the review was to define the upper and lower bound curves of soil shear modulus values. At the same time it was decided to develop site specific response spectra for Clinton site. For this purpose an estimate of shear wave velocities for soils present below the foundation mat was required. A review of the shear wave velocities given in FSAR figures 2.5-369 thru 2.5-371 suggested that in light of the knowledge gained from recent geophysical tests conducted at various sites of comparable soil deposits, the shear wave velocities given in these figures were too high. The shear wave velocities given in the FSAR were computed from the measured compressional wave velocities and estimated Poisson's ratio. In view of the current knowledge the estimated values of Poisson's ratio are considered too low. Based on the above, a thorough review of the shear wave velocities and the low-strain soil moduli, was started by Dames & Moore. In order not to delay the work on site-specific response spectra, an estimated value of 2500 ft/sec for the Illinoian till layer and 1000 ft/sec for the structural fill layer was given to Weston Geophysical, with the understanding that for the Illinoian till layer the velocity could range between 2000-2500 ft/sec and a variation in this range will not have any significant impact on the site specific response spectra. E201050231 011231 hE PDR ADOCK 05000461 gI A PDR ..

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 4 ., ,

    /LLINDIS POWER COMPANY ~q 3 z32_33y_g) 500 SOUTH 27TH STREET, DECATUR, ILLINOIS 62525December 31, 1981

    on9

    Mr. James R. Miller, ChiefStandardization & Special Projects Branch (

    RECEIVEDDivision of LicensingOffice of Nuclear Reactor Regulation

    93 JAN 4 1982> I2'

    U. S. Nuclear Regulatory Commission -

    Washington, D. C. 20555 ( ugemny% nn 1

    Dear Mr. Miller:4 9

    WClinton Power Station Unit 1

    Docket No. 50-461

    In the course of developing responses to NRC's requestfor information on seismic soil-structure interaction analysis,including soil properties variation, a review of the dynamicsoil properties was undertaken. The goal of the review wasto define the upper and lower bound curves of soil shearmodulus values. At the same time it was decided to developsite specific response spectra for Clinton site. For thispurpose an estimate of shear wave velocities for soils presentbelow the foundation mat was required. A review of the shearwave velocities given in FSAR figures 2.5-369 thru 2.5-371suggested that in light of the knowledge gained from recentgeophysical tests conducted at various sites of comparablesoil deposits, the shear wave velocities given in thesefigures were too high. The shear wave velocities given inthe FSAR were computed from the measured compressional wavevelocities and estimated Poisson's ratio. In view of thecurrent knowledge the estimated values of Poisson's ratioare considered too low.

    Based on the above, a thorough review of the shear wavevelocities and the low-strain soil moduli, was started byDames & Moore. In order not to delay the work on site-specificresponse spectra, an estimated value of 2500 ft/sec for theIllinoian till layer and 1000 ft/sec for the structural filllayer was given to Weston Geophysical, with the understandingthat for the Illinoian till layer the velocity could rangebetween 2000-2500 ft/sec and a variation in this range willnot have any significant impact on the site specific responsespectra.

    E201050231 011231 hEPDR ADOCK 05000461 gIA PDR

    ..

  • - -. .

    Mr. James R. Miller -2- U-0348

    Dames & Moore has completed its review of the shearwave velocities and the low strain soil moduli values. Re-sults of this review are documented in the attached revisedFSAR figures 2.5-369 thru 2.5-371, and tables 2.5-46 and2.5-48.

    We have evaluated the effect of the above changes onthe plant design and determined that there is no impact onthe design. We believe that these changes have only aconservative effect on the site specific response spectra,if any. Weston Geophysical has been informed of the latestrevision in the shear wave velocity of the Illinoian tilllayer (from 2500 ft/sec to 2100 ft/sec) and they are proceedingto incorporate the effect of this, if any, in their work ofsite specific response spectra development.

    The revised FSAR tables and figures included here willbe docketed in the next amendment of the FSAR.

    Sincerely,

    !.h f 'FwJ. D. GeierManagerNuclear Station Engineering

    HBP /lt

    Attachments

    cc: J. H. Williams, NRC Clinton Project ManagerH. H. Livermore, NRC Resident !aspectorR. Jackson, NRC Chief Geosciene.es BranchG. Giese-Koch, NRC Geosciences BranchB. Jagennath, NRC HGEB

  • __.

    :* :'

    3 ,-

    $H b- 060 $ g@d

    '

    o UNITGR APHIC UNIT $3( OO- ILLINOIAN30.o *

    h< (C.'*; GLAC. AL TILL;

    ICCCIZ 333$o .e a

    8 *.u* oC 0 OUTWASH ANOEw [,0f 5Io*j.0 '; L ACUSTRIN E"@ H*.?o3 =c0c DEPOSITS

    ?hJCf 0p,$0?w- ,

    5 kc$28?$ i L ACU S T R INE '500 0.46 2!O0 13 5 147:.

    10 [ DEPOSIT'*

    I .i (Yormouthion)

    - ; ' ~. . , = : ). 0.. . ..'.[jf":'3*4f PRE-ILLINOl AN *. ,i }. 7(d.6- GLActAL TILL"

    . '.'.N. di lo otty undertain by6" "~ # ' /,' . . < PRE-ILL!N OI AN" "

    d;. ,.''''L ACUSTRINEOEPOSIT

    '

    :

    ,s . . . _LIMESTONE5' - ,

    _ . . ..._x

    $"#I -g

    10,500 0.29 5700 155 160

    *1. - 1-

    ; ; .. SILTSTCN E__ _ _ .---

    _ ___. =_. . _ _ _. _ .- , - - cr.r-

    CLINTON POWER STATIONFIN AL S AFETY AN ALYSIS REPORT

    FIGURE 2.5-369

    -w./,~,; e, : . .. TYPICAL GEOLOGIC PROFILE SH0'.ilNG

    - m.iu2 u .i ., nem.o. .u n.n, ., . 3. :. r. GEOPHYSICAL PROPERTIES - STATION SITE:. . .:

    nc, - ..-. n.n.

    . . - . . .- . - _ ..-. . . . - - . - - - . ,_ - , . - .. _ .- _ . . ,. -_,- .. - . - .. __. . _ .-

  • .

    .. ..

    5U bNUw $ e8o UNIT'

    3U C -- 'tJ$ WEIGHTU'$ y[ NQ $Q (pcf)' GR APHICUNIT

    COLUMN DESCRIPTION y. a w o c w'

    5> a >0 ** 5 DRY WEToB >

    ' ' '// , -__

    10'

    . / /A SALT CREEK; '' 'E'N NNolN|or;:nie 2M 0 37 900 iOO 822''re:.e:l.:. tor. i j

    si: .e : .e : .e:* * ** *[ : ! ** ! [-*

    O 0 *9TcM 2c #::c C *3 *. f O o $.E' C ko of.f.,?C% M.O do ~* cO> 6 0 *0(J- ILLINOl ANy % 0;% c %*~q|

    3, ' . GLACI AL TILL;

    V Icect112 .i,..>ne,r...,,=,,.,:.,.,,,r .c..u: 2.a m .a ..s c, .. , -,_, -- - - - - - . ~ . . . , , . - - - , - . - - - . - - -

  • * * .. . . .. .

    ' - - '

    m__

    Q >-~

    ~w b-bO'S U U o U Nii";

    ~3$ WEIGliT' GilAPHIC ' UNIT $30 6U- EI COLU.'.tN < DESCRIPTION yy[ $Q Ij p g (pef)

    c. u C A "w.taM >g A >8h y CRY | WET

    - . _ .. , s. _ -

    V L:

    .f.. ~. : ::::in by crqsolc 2000 0.37 SCO 105 125f7 ,:,y f:.,. f:., ,It tc;:cil

    1:'.;: f., y;.U .;;1. '.A,

    -

    [O*C %;5q: .

    'dngehole gyo c.Aj

    o

    Or19,3 o,. A'b

    .-4eo* .81 t./'gd'.h ILLINOIAH

    " *'c*G[c g# 1-

  • . - - - _ _ _ _ - _ - _ . . _ _ _ . . . _ _ ..

    '-

    .

    ,

    MISC-9-A10 .~

    . .

    TABLE 2.5-46

    FIELD SHEAR WAVE VELOCITY TABULAT' ION.

    .

    ESTIMATEDDEPTil

    VELOCITY(ft/sec) SOURCE MATERIAL TYPE (feet)_

    ,'

    900* Geophysical P-14 Low-velocity surface layer 0-16 ,,1100 Geophysical P-14 Wisconsinan till, 16-47

    2100 Geophysical P-14 Illinoian glacial till 47-237

    5700 Geophysical' P-14 Top of bedrock 237+

    Geophysical D-Ik Salt Creek alluvium 0-18900*- 2000-2100 Geophysical D-11 Illinoian glacial till 18-150

    1800 Geophysical D-11 Bedrock valley odtwash deposit 150-290-5700 Geophysical D-11 Top of bedrock 290t

    900* Geophysical D-31 Salt Creek alluvium 0-142100 Geophysical D-31 Illinoian glacial till 14-195

    1800 Geophysical D-31 Bedrock valley 195-305305+5300-5500 Geophysical D-31 Top of bedrock

    -

    ,

    * Measured.

    l

    .

    .

    4

    -

    .

    9

    OO

    I

    O ,

    ._m-

  • ( MISC-9 A6/A7#

    | TAOLE 2.5-48

    i * PARAMETERS FOR ANALYSIS OF ROCK.50!L-STRUCTURE INTERACTION

    COHE510NLE55

    | SOIL CCHE51VE 50!L5RECOMPAC H D RECOMFACHDWI5C0h5thAN WISC0h5 t hAN

    GLACIAL TILL GLACIAL TILLOF WEDRON FORMATION OF h!DRON FORMATION WISCONSINAN

    COMPACTED TVPE A PATERIAL TYPE A PATERI AL GLACI AL TILL t hTER GLACI ALSlHUCTURAL FILL (AS COMPACTED) (SATL1t ATED) LOESS OF WEDRON FORMATION DEP05fi5

    CENSITY (pcf): Dry density 123 127 128 101 118 !!5Wet density 132 141 144 120 137 131

    P015.t0N'S RATIO: Dynamic 0.40 0.40 0.40 0.37 0.48 0.48Static 0.30 0.40 0.40 0.40 0.40 0.40

    STATIC MODULUS OF ELASTICITY (Es)In-sttu modulus (psf) -- 6.0 x 105 2.0 x 105 2.0 x 105 13,3 , 305 15.1 x 105Increase with surcharge

    des /do' (psf / psf) 350 0 0 0 0 0

    DYNAMIC MODULUS OF ELASTICITY (psf)Single amplitude

    1/2Shear strain = 1.0% 22.000( !! x 105 3 x 105 3 x 105 12 x 105 9 x 105I= 0.11 90.000 39 x 105 8 x 105 8 x 105 36 x 105 33 x 105I/= 0.01% 207.000 98 x 105 34 x 105 31 x 105 80 x 105 80 x 1051/2= 0.001% 271.000 148 x 105 76 x 105 74 x 105 130 x 105 130 x 1051/2= 0.00011 280.000( 162 x 105 95 x 105 93 x 105 160 x 105 150 x 105

    STATIC MODULUS OF RIGIDITY (Gs)3.0 x 105 0.7 x 105 0.7 x 105 4,7 , 305 5.4 x 105In sttu modulus (psf) --

    Increase with surchargeaG5/do' (psf / psf) 135 0 0 0 0 0

    DVhAMIC MODULUS OF R!GIO!IV (psf)Single amplitude 1/2Shear strain = 1.0% 8.000(o 4 x 105 1 x 105 1 x 105 4 , g05 3 , 3351/2= 0.11 32,000( 14 x 105 3 x 105 3 x 105 12 x 105 gg , gas1/2= 0.01% 74.000( 35 x 105 12 x 105 12 x 105 27 x 105 ?? x 105II#= 0.001% 97.000 53 x 105 27 x 105 27 x 105 44 , 305 44 , gos1/2= 0.00011 100.000 58 x 105 34 x 105 34 x 105 54 x 105 54 x 105

    *

    CAMPINGPercent of critical damping

    Single amplitudeshear strain = 1.0% 16 20 20 20 20 20

    = 0.1% 14 9 15 15 9 9= 0.011 6 5 10 10 5 5= 0.0011 2 3 6 6 3 3= 0.0001% 1 2.5 4 4 2.5 2.5

    l 9 h .''~

    r 7a $" );,' {f '(l',' , ' sdb.. ) II . t ;

    1

    h'$' *

    i s. 4, ' , ':. I . .,

    . t. f . y '.

    li

  • * ,

    e8' -

    .

    b. bO O- ce - e. OM M M N .c. == %'.~.**-e y y y ev

    ad to On On Ch tp ED t#b O e eL' en en NN e O eO e O eO O o 3 }du OO* M Pan a= M eaO

    e* e* *,

    a,eO O O O ** b e.en ee ** se

    et Dh 90 M W z ce e e es eO . Mo O es

    E 56 ==

    2 NNNNN NNNNN to= em4A =C Nw%%%% %.e s% % %

    g

    - tae"* eft we me ce ce we 40en

    -* af ** ** = E- E- E= E+ E ** *EaE=E=E E .>==CFe

    ee e e se se VO to O -==e-me== O ---=w=,.= epee

    .O OJE*J-e== Ne O w=.o.w=-=.o No oe oo o. e-w o., o w en,O e-=.J an ON

    ** O 4 Ca me ce e m~ u Oat sC mme O PD O OO OOMN*e & > '-. _ , -

    o eM M

    == s.kOO O == Q O, O OO Neo g c

    ene enJ =*e e o e e e e o e e ge

    O , O OO ==I hag O ce

    8 80 ett et CD CD D =F N tD en - e-cm 3 .a.t=

    th as On s== e o e=1 es M to e%eg .ee N N 3 K

    V edE Oe MsWWJ4 C r== to to ett ett to art to ett en to to en g gn. ""*OM O OOOOO O OOOOO 6

    O et *% en en ,,g" * * * * * * " * * " * * $a ,t, e=- .a x O ===== = 0 = ==== e .se p.-,..a O a=e ce o e o m re. et aus g g ,, == CL OO W *e e e to N Pm 10 @ *% aft O N ee -ha ''J,t ees e N e% N m == * me N . . ae en e . -w -ni had 63 N 4%if M er en en ee C . e em mm- ,

    3 ~ * ** O O w=* .w4 W h. = . . .

    . ., e,.a . 2 . *===*Fe=wO 2 en O OOOOO O OOOOO en ~ *e4= = * = es ce se we ** ee == ee me me s=e ** C **d oc = M er N en . nA ett g enaa>= M NM . f*) M O u u m a at M O xwwww e o

    t.D {dt O ,e,eeseo e e p Og er M N g* ** 5 , CL QO 96er eO e eD N. N. 80 @ N en.e O N @en n.> gas e NNNme e NNm en %nadog Q gy NM= On es e=0 g 4.

    I =a N A O- O . es**% U y e.

    "D e b$4 e, e O3 EJ e n A.e eD nft eft 46 en en ' ep to t#t eD te en e= . es eC

    aC. - O Oe e e.e e eO OOOOO 3 ==OOOO we-- . -

    -O OO e en to e.e .. - ce - - es .= * u O e.e ,

    .-c e.en+ e

    .- O zu me ,r a = O ===== = . O = ==== e 2.e. CM . ~ ee M c.,

    -u -c -- e e . . .uo e,t _ .e,>_ = .*e.ev- s- CO . - E N ic , - .

    9" ** # # ''" & & b P"

    eem.e b eee pV-w

    3.J.J 6, -.

    O E D t'k **Sh 4= *( .J O 3 D CL e4 .aE eE E em O ** 344 u CE DE =E O E ta% CL O eo Oe es o 9 Ge - * * * * *

    E L 3 ea V b d-b * * * " "''OCO w t#9O. *3 ea V3 * se N ee em g % e as C ag am, og

    .Z == Sp em U s=- ea = ed e4 O*@ O es C W3=g ako O U en s. Las se Oe r - U en % 0 ** Ogf6 2 kb *= G **** 4= to fof ,c e/l es cc - .C. e4 etT eoD$ om eh me euUE == af e-o == 2 a#3 aC e=a se e#9

    . CL er er WU e#t e#t e-cc p-CL E +8ett - g.a O e- >= e- >= **

    K O b t#4 O t#9 O O - p==,, '

    c

    J

    -)'A

    ''

    ,, . t :. ' *

    .---. _ _ - _ _ - - ___ _ _ _ _ - _ - _ _ _ - - _ _ _ -- - _ _ - _~