advances in thermodynamics - …downloads.olisystems.com/olisimulationconferences/simconf12/... ·...

52
Think Simulation! Adventures in Electrolytes OLI Simulation Conference 2012 Advances in Thermodynamics October 16, 2012

Upload: dangthu

Post on 10-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Think Simulation! Adventures in Electrolytes

OLI Simulation Conference 2012

Advances in Thermodynamics

October 16, 2012

Scope • Review of Mixed-Solvent Electrolyte model

• Application highlights for various chemistries

• Actinide solution chemistry: microcosm of MSE

• CO2 – H2O – salt systems: key chemistry in nature

• Improved temperature and pressure dependence of parameters: density and heat capacity of salt solutions

• Si chemistry: importance of speciation

• Salts in nonaqueous solvents: battery electrolytes

• Additional thermophysical properties

• Interfacial tension

• Improvement of thermal conductivity model

• Guidelines for selecting the MSE and AQ thermodynamic models

• Plans for future development

MSE thermo thermo Standard-

state: HKF

(direct)

GEX: MSE no limit on

concentration

Solid phases: thermochemical

properties

Surface

tension

Interfacial

tension 2nd liquid phase:

MSE (ionic)

Electrical conductivity

Viscosity

Thermal

conductivity

Self -

diffusivity

Interfacial phenomena: ion exchange, surface

complexation, molecular adsorption

Mixed-Solvent Electrolyte

Framework

RT

G

RT

G

RT

G

RT

G exII

exLC

exLR

ex

LR Long-range electrostatic interactions

LC Local composition term for neutral molecule interactions

II Ionic interaction term for specific ion-ion and ion-molecule interactions

Mixed-Solvent Electrolyte Model: Selected New Chemistries in 2010-2012

• Inorganic systems

• CO2 – salt – water chemistry

• Alkaline earth metal solution chemistry (with common anions): Be, Sr, Ba

• Transition metal solution chemistry: V, Mo, Fe, Ni, Cu(I), Zn, Hg

• Post-transition metal solution chemistry: Ga

• Metalloid solution chemistry: Si

• Actinide solution chemistry: U, Pu, Am

• Selected sulfamates, cyanides, perchlorates

• Densities up to high temperatures and pressures

• Improved heat capacities

Mixed-Solvent Electrolyte Model: Selected New Chemistries in 2010-2012

• Organic and organic/inorganic systems

• Main alkanolamine – CO2 – H2S systems

• Selected carbohydrates

• Caprolactam process chemistry

• Phenol – H2SO4 – NaOH chemistry

• Hydrocarbon – salt – water systems

• LiPF6 and LiBF4 in nonaqueous organic carbonate solvents

• Selected nitriles and heterocyclic nitrogen-containing compounds in water

• Selected fuel oxygenate components

• Selected oxalates

Modeling actinide (U, Pu, Am) chemistry: Microcosm of MSE

• Solubility of oxides / hydroxides as a function of pH

• Accuracy controlled by the standard-state properties of species (dilute solutions)

Hydrolyzed forms

Complexes (with carbonates, peroxides, etc.)

• Behavior in HNO3 solutions

• Very high solubilities

• Accuracy controlled by MSE interaction parameters

• Double salt formation (with Mo, Cs, etc.)

• Multiple redox states

Pu solubility as a function of pH

t = 25oC

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14 16 18

pH

m-P

u

Pu(III): Pu(OH)3PPT

Pu(IV): Pu(OH)4PPT

Pu(V): PuO2OHPPT

Pu(VI): PuO2(OH)2.H2O

Pu(V)

Pu(III) Pu(VI)

Pu(IV)

• Amphoteric character: importance of hydrolyzed species

• Key oxidation states: III, IV, V, and VI

• Pu(III) and Pu(V) are unstable due to disproportionation (V) and oxidation (III)

Uranium (VI) Solubility in UO3 + HNO3 + H2O system

UO3.H2O

59C

50C

40C

30C

25C

UO3

HNO3H2O

UO3.H2O

UO2(NO3)2.6H2O

UO2(NO3)2.3H2O

UO2(NO3)2.2H2O

• Very concentrated nitrate solutions

• Multiple hydrates of UO2(NO3)2

• Hydration number decreases with rising HNO3 content

CO2 /carbonate chemistry Importance of both H2O-rich and CO2-rich

phases

• CO2 – H2O binary • Major improvement for the CO2-rich phase

• CO2 – H2O – salt systems: Water-rich phases • Extensively data are available

• Comprehensive parameterization for CO2 – HCO3 – CO3 – Cl – Na – K – Mg – Ca – Sr – Ba systems

• CO2 – H2O – salt systems: CO2-rich phases • Not studied in the literature

• Crucial for CO2 sequestration and mineral carbonation

Mineral transformations are controlled by both water content and high CO2 partial pressure

• Joint project with PNNL: New water content data

• MSE can predict composition of CO2-rich phases based on parameters obtained from H2O-rich phases

9

Water content in CO2 – rich

phase

• Transition from VLE to LLE behavior as pressure increases

• MSE methodology:

• MSE liquid phase model + vapor EOS in VLE region

• MSE liquid phase model for both H2O- and CO2-rich phases in LLE region

• Transition region is important in CO2 sequestration

15 – 40 °C

50 – 75 °C

Effect of salt content in the H2O-rich phase on the water content in the

CO2 – rich phase

• Pure prediction: parameters were derived from data for H2O-rich phases only

• Water in CO2 is needed for mineral transformations

• A change in water content of CO2 phase changes the reactivity of minerals Dashed lines: Minimum water content that is

necessary for transformation of forsterite, Mg2SiO4, into nesquehonite MgCO3∙3H2O

Densities up to high T and P

• Temperature and pressure dependence of ion interaction parameters has been made more flexible

• This is necessitated by the inherent P and T dependence of standard-state properties, especially at higher temperatures

• Densities can be represented now up to 4000 atm

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

0 1000 2000 3000 4000

Den

sity

,g/l

P / atm

20

C

1.9 m0.9 m 0.17 m

0.017 m

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

0 1000 2000 3000 4000

Den

sity

,g/l

P / atm

200

C

5.7 m3.75 m

1.9 m0.9 m 0.17 m

0.017 m

Si chemistry: Importance of

speciation

• A model for SiO2 in the liquid phase was developed previously

• Solubility in the liquid phase was excellent up to 350 C and 2000 atm

• Solubility in the gas phase was very bad

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350

pp

m S

iO2

t/C

saturation pressure

Beckwith and Reeve 1969

Crerar and Anderson 1971

Fournier 1960

Hemley et al. 1980

Kennedy 1950

Kitahara 1960

Morey et al. 1962

Rimstidt 1997

Siever 1962

van Lier et al. 1960

Prediction

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350

pp

m S

iO2

t/C

p=1000 atm

Hemley et al. 1980

Kennedy 1950

Morey et al. 1962

Ragnasrdottir and Walther 1983

Walther and Orville 1983

Wang et al. 2004 (+/- 200 atm)

Weill and Fyfe 1964

Prediction

Hydrated silica (H4SiO4) in the gas phase

• By introducing a hydrated form, H4SiO4, solubility of SiO2 in the gas phase can be reproduced without changing the SiO2 properties in the liquid phase

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0 50 100 150 200 250 300 350

y S

iO2

t/C

Martynova et al. 1975

Plyasunov 2012, silica

MSE silica

Plyasunov 2012, quartz

MSE quartz

SiO2 in the gas and liquid

phases

• MSE reproduces the solubility of SiO2 in both the gas and liquid phases up to 400 C and 2000 atm

• It agrees with the solubility transition from vapor-like to liquid-like region

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

10 100 1000

x S

iO2

p H2O [atm]

Martynova et al. 1975, t=262.72C

Heitmann 1964, t=265C

MSE, t=262.72C, silica

MSE, t=262.72C, quartz

Morey and Hesselgesser 1951, t=400C silica

Heitmann 1964, t=400C

MSE, t=400C, silica

Morey and Hesselgesser 1951, t=400C quartz

MSE, t=400C, quartz

V-L transition at 262.72 C

Near-critical transition at 400 C

Nonaqueous systems: LiPF6 and LiBF4 in organic carbonates

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-40 -30 -20 -10 0 10 20 30 40 50t / C

x L

iBF

4

DMC

LiBF4.2DMC

LiBF4.0.5DMC

DMC - calculated

LiBF4.2DMC - calculated

LiBF4.0.5DMC - calculated

• Components of lithium batteries

• Polar solvents: mixed organic carbonates

• Lithium salts are highly soluble and conductive in organic carbonates

• Phase behavior includes the formation of salt – carbonate adducts

LiBF4 + dimethyl carbonate

Modeling interfacial tension

Interfacial tension of a

partially miscible mixture

in the absence of electrolyte:

Mixing rule in terms of phase

compositions and interfacial

area (related to volume)

contribution

of electrolytes

eelectrolytms

MSE thermodynamic model

for speciation calculations

i

inti

21

ii 1RT

Aexpxx

31A

32inti

inti NvA

0

10

20

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0

X-PHENOL

T/C

LLE

phenol + water

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80

t, C

, m

N.m

-1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 20 40 60 80

t, C

, m

N.m

-1

Phenol + water: IFT decreases with increased mutual solubility

0

10

20

30

40

50

60

70

80

0.001 0.01 0.1 1

xtriethylaminet,

C

TEA + water: IFT increases with decreased mutual solubility

Interfacial tension vs. mutual solubility

-20

0

20

40

60

80

100

120

0.01 0.1 1

xC4H9OH

t, C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-20 0 20 40 60 80 100 120

t, C

,

mN

.m-1

n-butanol + water: IFT shows a maximum as solubility exhibits a min.

Structure of the model

The Gibbs equation

Relates interfacial tension to activities and surface excess of species

Adsorption isotherm

Defines interfacial concentrations (surface excess)

Introduces interactions of species at the interface

MSE model

Provides activity coefficients and speciation

Effects of electrolytes on interfacial tension – eelectrolyt

Effect of electrolytes on interfacial tension:

Hydrocarbons + water + NaCl

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

0.0 0.5 1.0 1.5 2.0 2.5

{mNaCl, mol.kgH2O-1

}0.5

, m

N.m

-1

o-xylene (1997LHDS)

benzene (1916HH)

n-dodecane (1976AS)

n-octane (1997DV&1996CYG)

n-hexane (1939E)

Organic + H2O + NaCl (20~25oC)

increases with salt concentration for most systems The change in can be attributed

to the combined effects of

Solubility: Salting-out solubility

Ionic interactions at the interface can cause an increase or decrease in

Mutual solubilities from MSE predict trends of interfacial tension with salt concentration

Revision of thermal conductivity model: Pressure dependence

total wt% = 15

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

280 330 380 430 480 530 580

T/K

l, W

∙m-1

∙K-1

5 MPa

10 MPa

20 MPa

30 MPa

40 MPa

50 MPa

wt% KCl = wt% CaCl2

(wt% NaCl) / (wt% CaCl2) = 3

b. • Introducing pressure dependence of parameters

• Effect of pressure is comparable to the effect of electrolyte concentration

• Important for seawater applications

T and P dependence for a NaCl - KCl - CaCl2 - H2O mixture at constant concentration

MSE thermo thermo Standard-

state: HKF

(direct)

GEX: MSE no limit on

concentration

Solid phases: thermochemical

properties

AQ thermo Standard-state: HKF (via fitting

equations)

GEX: Bromley-Zemaitis

I < 30m; xorg < 0.3

Solid phases: equilibrium

constants (Kfits)

Surface

tension

Interfacial tension

2nd liquid phase:

MSE (ionic)

2nd liquid phase:

SRK (non-ionic)

Electrical conductivity

Electrical

conductivity

Viscosity Viscosity

Self -

diffusivity

Thermal

conductivity

Self -

diffusivity

Interfacial phenomena: ion exchange, surface

complexation, molecular adsorption

MSE vs. AQ frameworks

Databank statistics • MSE model

• Continued growth of the MSEPUB databank:

1709 species in October 2010

1825 species in October 2011 (version 8.3.6)

1900 species in September 2012 (version 9.0.1)

1933 species in October 2012 (version 9.0.2)

• Corrosion (CRMSE) databank

323 species

• Geochemical (GEMSE) databank

130 species

• Aqueous model

• Small increase of the number of species

5403 species in PUBLIC

373 species in CORROSIO

139 species in GEOCHEM

MSE vs. AQ: Practical aspects

• Why is the MSE databank still much smaller than AQ?

• A much larger number of organic solutes in AQ, valid in relatively dilute solutions

• A large number of aqueous complexes

Chelants are not available in MSE

• A limited number of species with some anions in MSE (Br, I)

• A limited number of species with some less-common elements in MSE (e.g., As, Sb, Bi, Se, Rb, Cs, Th, Np, Pt group)

MSE vs. AQ: Practical aspects

• Why is MSEPUB currently growing by only ~ 6-7% per year?

• All parameters are introduced only based on critical evaluation and regression of primary experimental data (VLE, SLE, LLE, speciation, Hex, etc.)

• Thermochemical parameters are never introduced straight from the literature

• Standard-state properties are never introduced without consideration of solution nonideality

• Detailed validation spreadsheets are maintained

MSE vs. AQ: Selecting the model

• Current default in the software: AQ

• Larger database

• The only model available for corrosion kinetics

• The only model available in ScaleChem Standard (transition to Studio ScaleChem is under way)

• MSE parameters for hydrocarbons are being revised

• However, numerous systems can be modeled only with MSE or can be modeled much better

MSE vs. AQ: Selecting the model

• Examples of chemistries that can be handled only by MSE

• Oil and gas chemistry in the presence of glycols and methanol

• Sublimation equilibria

• Refinery overhead chemistry

• Ionic liquids

• CO2 – rich phases

• Electrolytes in nonaqueous solvents

• Electrolytes in two liquid phases (e.g., I-S chemistry)

• Extraction systems with electrolytes

• Concentrated nitrate chemistry

• Acid-base chemistry in mixed solvents

• Urea chemistry

• Caprolactam chemistry

MSE vs. AQ: Selecting the model

• Examples of chemistries that can be modeled much better by MSE than by AQ

• Power plant chemistry (transition metals, B, Li, Si, etc.)

• Hydrometallurgical systems

• Corrosion product chemistry

• Nuclear waste chemistry

• Carbohydrate chemistry

• In general, multicomponent salt systems

• What is needed to change the default to MSE?

• Revision of hydrocarbon parameters

• Improvement of properties of common gases, including the effect of electrolytes

Plans for Future Development

• Development of MSE thermodynamic parameters

• Client-directed targeted chemistry studies

• Broad-based advancements in parameterization

Hydrocarbon – water – electrolyte mixtures

Gases in the presence of electrolytes

Organic sulfur species

Hydrometallurgical chemistry (with University of Toronto)

Many others

• Additional thermophysical properties

• Finalize the model for interfacial tension

• Develop a model for mutual diffusivity

Foundation for improved mass-transfer separations

Appendix

MSE Databank Coverage

Chemistry Coverage in the MSEPUB Databank (1)

• Binary and principal ternary systems composed of the following primary ions and their hydrolyzed forms

• Cations: Na+, K+, Mg2+, Ca2+, Al3+, NH4+

• Anions: Cl-, F-, NO3-, CO3

2-, SO42-, PO4

3-, OH-

• Multicomponent Na salts

• Na+ - F- - NO3- - NO2

- - CO32- - SO4

2- - OH- - PO43-

• Li chemistry

• Li+ - K+ - Mg2+ - Ca2+ - Cl-

• Li+ - BO2- - H+, F-, CO3

2-

• Cs chemistry

• Cs+ - NO3-

• Ba chemistry

• Ba2+ - Cl- - CO32- - SO4

2- - OH- - BO2- - NO3

- - H+ - Na+ - K+ - Mg2+ - Ca2+ - Sr2+

• Sr chemistry

• Sr2+ - Cl- - CO32- - SO4

2- - NO3- - H+ - Na+ - K+ - Mg2+ - Ca2+ - Ba2+

• Borate chemistry

• H+ - Li+ - Na+ - Mg2+ - Ca2+ - BO2- - OH-

• H+ - Li+ - Na+ - BO2- - HCOO- - CH3COO- - Cl- - OH-

In red: Additions and revisions since Oct. 2011

• Aqueous acids, associated acid oxides and acid-containing mixtures

• H2SO4 – SO3

• HNO3 – N2O5

• HNO2

• H3PO4 – H4P2O7 – H5P3O10 – P2O5

• H3PO2

• H3PO3

• HF

• HCl

• HBr

• HI

• H3BO3

• NH2SO3H

• HClO4

Chemistry Coverage in the MSEPUB Databank (2)

•HFSO3 – HF – H2SO4

•HI – I2 – H2SO4

•HNO3 – H2SO4 – SO3

•HCl – H2SO4

•H3PO4 with calcium phosphates

•H+ – Na+ – Cl- – NO3-

•H+ – Na+ – Cl- – F-

•H+ – Na+ – PO43- - OH-

•H+ – NH3 – NO3- – SO4

2-

•H+ – NH3 – Cl-

•H+ – Na – Ca – Cl – SO4

•H+ – Mg – Ca – Cl – SO4

•H+ - NH2SO3- - NH4

+ - SO42-

• Sulfide and H2S chemistry (other than transition metals)

• NH4HS + H2S + NH3 • H2S – H+ – Na+ - Cl-

• Na2S – NaHS – H2S

• Inorganic gases in aqueous systems • CO2 - NH3 - H2S

• CO2 - Li+ - Cl- - CO32-

• CO2 - Na+ - Cl- - CO32-

• CO2 - K+ - Cl- - CO3

2-

• CO2 - Mg+ - Cl- - CO32-

• CO2 - Ca+ - Cl- - CO32-

• SO2 - H2SO4

• N2

• O2 • H2 – H+ – Na+ - Cl-

• NO

Chemistry Coverage in the MSEPUB Databank (3)

• Beryllium chemistry • BeII – H+ - OH- - Na+, K+, CO3

2-, S2- • Silicate/aluminosilicate chemistry

• SiIV – H+ - OH- - Na+

• Na+ - SiO32- - OH-

• SiIV – F- - HF – ClO4-

• Aluminosilicates

Cancrinite, hydrosodalite, zeolite A, sodium aluminosilicate gel

• Gallium chemistry

• Ga3+ - H+ - OH- - SO42- - Na+ - K+

• Perchlorate chemistry

• Na+ - Mg2+ - ClO4- - CO2

• Hydrogen peroxide chemistry

• H2O2 – H2O – H – Na – OH – SO4 – NO3

Chemistry Coverage in the MSEPUB Databank (4)

• Fe chemistry • FeII – H+ – OH- – Cl- - Br- - SO4

2- - NO3- - S2- - Ac- - NH3 - NH4

+ - Na+

• FeII – CrIII – H+ - OH-

• FeII - Na+ - PO43-

• FeII - CO32- - Cl- - ClO4

- - Na+

• FeIII – H+ - OH- – Cl- - SO42- - NO3

- - Br-

• FeIII – Ca2+ - H+ – Cl- - SO42-

• FeIII - Na+ - PO43-

• Co chemistry • CoII – H+ - SO4

2-

• Ni chemistry • NiII – H+ - OH- – Cl- - SO4

2- - NO3- - PO4

3- - S2- - NH3 - NH4+ - Na+ - morpholine

• NiII – CrIII – H+ - OH-

• NiII – TiIV – H+ - OH-

• NiII – FeII – H+ - OH- – BO2-

• NiII – Ca2+ - SO42-

Chemistry Coverage in the MSEPUB Databank (5)

• Cr chemistry • CrIII – H+ - OH- – Cl- - SO4

2- - NO3-

• CrVI – H+ - OH- – NO3-

• Mo chemistry • MoIII – H+ - Cl- - OH- - H2

• MoIV – H+ - Cl- - OH- - H2

• MoVI – H+ – OH- – Na+ – NH4+ – Cl- - SO4

2- - NO3- - S2- - H2O2

• MoVI - Ni2+- Fe3+

• W chemistry • WVI – H+ - OH- – Na+ – Cl-, NO3

-

• WIV – H+ - OH-

• Cu chemistry • CuII – H+ – OH- - Cl- - SO4

2- - NO3- – H2S - S2- - CO2 – CO3

- – NH3 - Na+ - morpholine – Et2NH

• CuI – H+ – OH- - SO32-

• CuI – H2S - S2-

• CuII – CuI – FeII – FeIII – H+ - OH- - S2-

Chemistry Coverage in the MSEPUB Databank (6)

• Sn chemistry • SnII – H+ – OH- – CH3SO3

-

• SnIV – H+ – OH- – Cl-

• Zn chemistry • ZnII – H+ - OH- – Cl- - SO4

2- - NO3-

• ZnII – H+ - Li+ - Cl-

• ZnII – H+ - Ca2+ - SO42-

• ZnII - FeIII

• Ti chemistry • TiIV – H+ – OH- – Ba2+ – Cl- - OH- - BuO- – Na+

• Zr chemistry • ZrIV – H+ - OH- - Li+ - Na+ - K+ - Cl- - NO3

- - H2O2

• ZrIV – MoVI – NO3-

• Pb chemistry • PbII – H+ - OH- – Na+ – Cl- – SO4

2- - S2- - H2S - CO32- - ClO4

- – K+ – Si4+

• PbII – TiIV, ZrIV– H+ - OH-

• PbIV – H+ - OH-

Chemistry Coverage in the MSEPUB Databank (7)

• V chemistry • VIII - H+

- OH- - S2-

• VIV - H+ - OH- - SO4

2-

• VV - H+ - OH- - Cl- - SO4

2- - NO3- - Na+ - NH4

+ - Fe3+

• Hg chemistry • HgII – H+ – OH- – Cl-

• HgI - NO3-

• Mn chemistry • MnII – H+ - Ca2+ - SO4

2-

• Ag, Tl chemistry • AgI – TlI – NO3

-

Chemistry Coverage in the MSEPUB Databank (8)

• U chemistry • UIV – H+ – OH- – H2O2 – Na+, K+, Mg2+, Cl-, ClO4

-, CO32-, NO3

-, SO42-

• UVI - MoVI - NO3-

• Pu chemistry • PuIII – H+ – OH-

• PuIV – H+ – OH- - H2O2 - Na+, Cs+, Cl-, ClO4-, NO3

-

• PuIV - MoVI - NH4+ - Cl-

• PuV – H+ – OH- - Na+

• PuVI - H+ – OH- - NO3-

• Am chemistry • AmIII – H+ – OH- – Na+ – Ca2+ – Cl- – ClO4

- – CO32- - CO2

• AmIV – H+ – OH-

• AmIII – S2-

• Nd chemistry • NdIII – H+ – OH-, Cl-

• NdIII – S2-

Chemistry Coverage in the MSEPUB Databank (9)

• Multicomponent metal systems: • CaSO4 – ZnSO4 – MgSO4 – MnSO4 – Na2SO4 – (NH4)2SO4 – H2SO4

• CaSO4 – ZnSO4 – Fe2(SO4)3 – ZnSO4 – H2SO4

• CaSO4 – NiSO4 – Fe2(SO4)3 – LiCl – H2SO4

• Cyanide chemistry

• HCN – CN- – Na+ – NH4+ - NH3

• Iodide chemistry

• I- - K+

Chemistry Coverage in the MSEPUB Databank (10)

• Urea chemistry

• CO2 – NH3 – H2O – NH4CO2NH2 – NH2CONH2

• (H2NCO)2NH (biuret) – H2O

• HNCO - NH4NCO – H2O

• (HNCO)3 (cyanuric acid) – H2O

• Miscellaneous inorganic systems in water • NH2OH – H2SO4 – NH3

• Na2S2O3

• Na+ - BH4- – OH-

• Na+ - SO32- - SO2

- OH-

• Br2 – H2O

• PF5 - H2O

• T2O – HTO

• Most elements from the periodic table in their elemental form

• Base ions and hydrolyzed forms for the majority of elements

Chemistry Coverage in the MSEPUB Databank (11)

• Organic acids/salts in H2O/alcohols • Formic

H+ - Li+ - Na+ - Formate - OH-

Formic acid – MeOH – EtOH - benzene

• Acetic

H+ - Li+ - Na+ - K+ - Ca2+ - Ba2+ - Acetate - OH-

Acetic acid – MeOH – EtOH – CO2

• Propionic

H+ - K+ - Ca2+ - propionate

• Butyric

H+ - K+ - Ca2+ - butyrate

• Heptanoic

H+ - K+ - Ca2+ - heptanoate

• Oxalic

H+ - oxalate – Cl- - SO42-, NO3

-, MeOH, EtOH, 1-PrOH

Na+ - H+ - oxalate

•Citric

•H+ - Na+ - Citrate – OH-

•Malic

•Glycolic

•Adipic

H+ - Na+ - Adipate

Adipic acid – MeOH, EtOH

•Nicotinic

H+ - Na+ - Nicotinate

Nicotinic acid - EtOH

•Terephthalic

H+ - Na+ - Terephthalate

Terephthalic acid – MeOH, EtOH

•Isophthalic

Isophthalic acid - EtOH

•Trimellitic

Trimellitic acid - EtOH

Chemistry Coverage in the MSEPUB Databank (12)

• Organic acids/salts in water and alcohols

• Acrylic

Acrylic – acetic acid

Acrylic – butanol

Complexes with Cu, Ni, Fe, Cr

• Methanesulfonic

• p-Toluenesulfonic

• 2-Phosphonobutane-1,2,4-tricarboxylic (PBTC)

Chemistry Coverage in the MSEPUB Databank (13)

• Hydrocarbon systems

• Hydrocarbon + H2O systems Straight chain alkanes: C1 through C30

Isomeric alkanes: isobutane, isopentane, neopentane

Alkenes: ethene, propene, 1-butene, 2-butene, 2-methylpropene

Alkynes: acetylene

Aromatics: benzene, toluene, o-, m-, p-xylenes, ethylbenzene, cumene, naphthalene, anthracene, phenantrene

Cycloalkanes: cyclohexane, decalin

• Hydrocarbon + salt parameters H3O

+, NH4+, Li+, Na+, K+, Mg2+, Ca2+, Cl-, OH-, HCO3

-, CO32- NO3

-, SO42-

generalized interaction parameters between hydrocarbons (and

pseudocomponents) and other ions

• Hydrocarbon + H2S systems

Chemistry Coverage in the MSEPUB Databank (14)

• Amines (including mixtures with H2O and hydrocarbons)

• Alkylamines:

Primary: methylamine, ethylamine, propylamine, n-butylamine, cyclohexylamine, ethylenediamine, 3-methoxypropylamine

Secondary: dimethylamine, diethylamine, sec-butylamine

Tertiary: trimethylamine, triethylamine, tri-n-octylamine

Mixed amines: methylamine – dimethylamine – trimethylamine

• Alkanolamines

methyldiethanolamine, monoethanolamine, diethanoloamine, 2-dimethylaminoethanol, dimethylisopropanolamine, diglycolamine

Monoethanolamine, diethanolamine, diglycolamine, methyldiethanolamine - CO2 - H2S

• Heterocyclic amines

N-methylpyrrolidone, morpholine, N-methylmorpholine, N-ethylmorpholine, 2,6-dimethylmorpholine

Morpholine - CO2

• Generalized interactions with hydrocarbons

Chemistry Coverage in the MSEPUB Databank (15)

• Carbohydrates

• Isosorbide (1,4:3,6-dianhydro-D-sorbitol)

• Glucose

Glucose – Na+, K+, Cl-

• Glucitol (sorbitol, (2S,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol)

Glucitol – Na+, K+, Cl-

• 1,4-anhydroglucitol (1,4-anhydrosorbitol, 1,4-sorbitan, arlitan)

Chemistry Coverage in the MSEPUB Databank (16)

• Organics and their mixtures with water • Alcohols

Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, cyclohexanol

• Glycols

Monoethylene (MEG), diethylene (DEG), triethylene (TEG), propylene, polyethylene glycols

MEG, DEG, TEG - hydrocarbons

• Phenols

Phenol, catechol

• Ketones

Acetone, methylisobutyl ketone

• Aldehydes

Butylaldehyde

• Carbonates

Dimethylcarbonate, diethylcarbonate, ethylene carbonate, propylene carbonate

• Halogen derivatives

CCl4, CHCl3, CH2Cl2

Chemistry Coverage in the MSEPUB Databank (17)

• Organics and their mixtures with water

• Aminoacids

Methionine, glycine

• Nitriles

Acetonitrile, 3-cyanopyridine, cis-crotonitrile, trans-crotonitrile, fumaronitrile, acrylonitrile, bis (cyanoethyl) ether

• Amides

Dimethylacetamide, dimethylformamide

• Heterocyclic nitrogen compounds

Oxazole, pyrazole, 3-methylpyridine, pyrimidine

• Esters

Butyl acrylate, butyl 3-butoxypropionate, butyl acetate

• Epoxides

Ethylene oxide

• Oximes

Cyclohexanonoxime

Chemistry Coverage in the MSEPUB Databank (18)

• Organics and their mixtures with water

• Lactams

Caprolactam

• Nitro compounds

Nitrobenzene

• Ethers

t-amyl methyl ether

• Mercaptans

Ethyl mercaptan

• Disulfides

Dimethyl, dipropyl mercaptans

Chemistry Coverage in the MSEPUB Databank (19)

• Lithium salt – organic carbonate systems • LiPF6 – dimethylcarbonate - diethylcarbonate – ethylene carbonate - propylene

carbonate

• LiBF4 – H2O – dimethylcarbonate – ethylene carbonate

• Mixed-solvent inorganic/organic systems

• Methanol – salt systems

Methanol – H+ – Na+ – K+ – Mg2+ – Ca2+ – Sr2+ – Ba2+ – Cl- – CO32- – HCO3

- – SO4

2- – BO2- – HCOO- – CH3COO- – CO2 – H2S

Methanol - O2

• Glycol – salt systems

Mono, di- and triethylene glycols – H+ – Na+ – K+ – Mg2+ – Ca2+ - Sr2+ – Ba2+ – Cl- – CO3

2- – HCO3- - SO4

2- – BO2- – CH3COO- – CO2 – H2S

Glycols - O2

• Ethanol – salt systems

Ethanol – Li+ - Na+ - Cl-

Ethanol – O2

• Phenol - acetone - SO2 - HFo - HCl – H2O, octane

• Phenol - H2SO4 - Na2SO4 - NaOH

Chemistry Coverage in the MSEPUB Databank (20)

• Mixed-solvent inorganic/organic systems

• n-Butylaldehyde – NaCl - H2O

• NH3 – methanol, ethanol, hexane, acetylene, H2

• Cyclohexanonoxime - H2SO4 - SO3

• Caprolactam - H2SO4 - SO3 - (NH4)2SO4 • Mixed-solvent organic systems

• HAc – tri-N-octylamine – toluene – H2O

• HAc – tri-N-octylamine – methylisobutylketone – H2O

• Dimethylformamide – HFo – H2O

• MEG – EtOH – H2O

• Butyl acrylate – acrylic acid – butanol – toluene

• Methanol – hexane, benzene

• Ethanol – hexane, benzene, toluene

• 1-Propanol – CCl4, toluene

• Isopropanol – benzene, cyclohexane, hexane, toluene

• t-amyl methyl ether - toluene

Chemistry Coverage in the MSEPUB Databank (21)

• Polyelectrolytes

• Polyacrylic acid

Complexes with Cu, Zn, Ca, Fe(II), Fe(III)

• Polymaleic acid

• Ionic liquids (cations: 1-ethyl-3-methyl imidazolium (EMIM), 1-butyl-3-methyl imidazolium (BMIM)

• BMIM-N(SO2CF3)2 – H2O, methanol, toluene, hexane

• BMIM-PF6 – H2O, methanol, toluene, hexane

• BMIM-SO3CF3 – H2O, toluene, hexane

• BMIM-BF4 – H2O, methanol, toluene, hexane, CH2Cl2

• EMIM-N(SO2CF3)2 – H2O, methanol, toluene, hexane, CH2Cl2

• EMIM-PF6 – H2O, toluene

• EMIM-SO3CF3 – H2O, methanol

• EMIM-BF4 – H2O, methanol, toluene, hexane

• EMIM-N(SO2CF3)2 – BMIM-N(SO2CF3)2 – H2O

• EMIM-N(SO2CF3)2 – BMIM-N(SO2CF3)2 – hexane

• BMIM-BF4 – BMIM-PF6

Chemistry Coverage in the MSEPUB Databank (22)