advances in computational studies of energy materials by c. r. a. catlow, z. x. guo, m. miskufova,...

45
Advances in computational studies of energy materials by C. R. A. Catlow, Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A. Sokol, A. Walsh, D. J. Wilson, and S. M. Woodley Philosophical Transactions A Volume 368(1923):3379-3456 July 28, 2010 ©2010 by The Royal Society

Upload: reynold-griffith

Post on 27-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Advances in computational studies of energy materials

by C. R. A. Catlow, Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A. Sokol, A. Walsh, D. J. Wilson, and S. M. Woodley

Philosophical Transactions AVolume 368(1923):3379-3456

July 28, 2010

©2010 by The Royal Society

The average solar spectral irradiance outside the Earth’s atmosphere (extraterrestrial) and incident on the surface (the terrestrial Air Mass 1.5 spectrum).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Schematic of a photoelectrochemical water-splitting cell employing an active n-type photocatalyst.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Representation of the tetragonal crystal structure of Sn2TiO4 with shaded distorted Ti octahedra, Sn (large balls) and O (small balls).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Ion-projected electronic density of states and (b) electronic band structure along the high symmetry lines of the first Brillouin zone.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Band and k-point decomposed charge density for the highest occupied valence band (VBM) and lowest unoccupied conduction band (CBM) states at the (a,c) Γ and (b) X points, for Sn2TiO4.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Cubic unit cell of SrTiO3 with (b) a 2×2×2 supercell showing the Ti–O octahedra.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Oxygen and (b) strontium transition paths.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Hydrogen configurations in Cu2O and Ag2O: (a) quasi-atomic configuration with spin density isosurface (turquoise) in Cu2O; (b) bond-centre proton; (c) inverted tripodal hydroxyl.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Minimum energy path for H2 dissociation on h-BN: (a) perfect sheet, (b) defect, (c)  defect, and (d) defect.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Schematic illustration of (a) Dewar (metal−π) bond and (b) Kubas (metal−σ) bond.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Side-on views of the structures of Sc decorated borazines: (a) the borazine molecule upon TM atom complexation, (b) the energetically preferred dihydride ligand, and (c) an example of the

maximal hydrogen loading, in this case with four H2 molecules.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Plot of successive binding energies per H2 to B3N3H6–TM for the TM atoms Sc (left) to Fe (right).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Density difference plots of Sc binding to (a) B3N3H6 and (b) B2N2H4.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Relaxed doped CNT structures and energetics (LDA) of (a) initial pinning of Ti dopant to vacancy, (b) initial hydrogenation, (c) maximal hydrogenation.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Free energies of H2 adsorption as a function of gas pressure for (a) LDA and (b) GGA calculations.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Active site in methanol synthesis over oxygen-terminated surface of ZnO.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

The anchor site for metal nucleation over zinc-terminated surface of ZnO.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Schematic of a typical SOFC. The cell consists of two electrodes, which facilitate the redox reactions to produce water from oxygen and hydrogen gas, and an electrolyte, which carries

electrically charged oxygen ions between the electrodes.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Defect structures in a fluorite lattice adopted by CeO2 and ZrO2.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Schematic of the discharge process in a lithium ion rechargeable battery.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Two phases of VO2.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Lattice energy and (b) free energy (T=0 K) landscapes (eV per monoclinic unit cell) with contours shown beneath, as a function of order parameters L1 and L2.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Ball-and-stick model of the defect region of infinitely dilute W-doped (a) tetragonal and (b) monoclinic VO2 phases.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Schematic of a solar cell: photon absorption generates an electron and hole, which are separated to perform work on an external load.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) The tetragonal kesterite crystal structure of Cu2ZnSnS4 and (b) with the corresponding cation ordering.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Electron density distributions for the acceptor and donor states produced by Cu and Zn anti-sites in Cu2ZnSnS4.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Schematic of a solar cell: photon absorption generates an electron and hole, which are separated to perform work on an external load.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

The structural configurations for charged (a) Ga interstitial and (b) N interstitial in the wurtzite phase of GaN.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Calculated donor levels of intrinsic and extrinsic defects in ZnO (in eV).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Zinc oxide bubble clusters, labelled with the number of formula units, n, and the point symmetry.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Cluster formation energies as a function of cluster size 1/n.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Octahedral cluster diameter as a function of cluster size, where trend lines are parabolic fits of 1/d2 with respect to inverse cluster size.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Dependence of octahedral cluster band gap (in eV) on cluster size plotted as a function of 1/n.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Computed bound singlet excitation states for (a) (SiC)12, (b) (SiC)16 and (c) (SiC)24.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Three most plausible structures of (M2O3)1: (a) linear chain (, 1D), (b) two-ring with a stick (C2v, 2D), (c) corundum unit (D3h, 3D).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

The variation of (a) energy difference (eV), (b) M−O bond lengths (Å) and (c) M−O−M bond angles (°) for (M2O3)1 clusters with the cationic radius (pm).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Relative formation energy of (M2O3)2 clusters, defined with respect to the mean formation energy for each compound, as a function of the cationic radius (pm).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Global minimum configurations of (Al2O3)n, where (a–h) n=1 to 8.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Global minimum configurations of (M2O3)n, where (a–e) M=B, (f–j) Ce, (k) Ga, (l) In to Tl, (m) Ga to Tl, (n) Al to Tl and (o) B to Ce.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Stick and ball (IP) and stick (DFT) models of the lowest energy clusters found for TiO2, ZrO2 and HfO2.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

(a) Energy of the highest occupied and lowest unoccupied molecular orbitals, EHOMO and ELUMO, and (b) their differences for DFT optimized clusters of (TiO2)n (diamonds), (ZrO2)n

(squares) and (HfO2)n (triangles).

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Two configurations and respective infrared spectra.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Lowest energy configurations found for neutral clusters of ceria.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society

Lowest energy configurations found for neutral clusters of ceria, CexOy.

C. R. A. Catlow et al. Phil. Trans. R. Soc. A 2010;368:3379-3456

©2010 by The Royal Society