advances in avoiding gas hydrate problems

24
1 Advances in Avoiding Gas Hydrate Problems Prof Bahman Tohidi Centre for Gas Hydrate Research & Hydrafact Ltd. Institute of Petroleum Engineering HeriotWatt University Edinburgh EH14 4AS, UK, [email protected] 2

Upload: others

Post on 07-Jan-2022

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advances in Avoiding Gas Hydrate Problems

1

Advances in Avoiding Gas Hydrate Problems

Prof Bahman TohidiCentre for Gas Hydrate Research & Hydrafact Ltd.

Institute of Petroleum Engineering Heriot‐Watt University 

Edinburgh EH14 4AS, UK, [email protected]

2

Page 2: Advances in Avoiding Gas Hydrate Problems

3

H2O States, Hydrogen Bonding

• Gaseous State (water vapour): 

– Molecules are separated, gas will fill the space available

• Liquid State (liquid water): 

– Molecules can rotate, liquid will take the shape of the container

• Solid State (ice): 

– Molecules have fixed positions, solid has its own shape

• Change from one state to another: 

– Effect of temperature Gas

Hydrogen bonding

Van der Waals forces

4

What Are Gas Hydrates?

• Hydrates are crystalline solids wherein guest (generally gas)  molecules are trapped in cages formed from hydrogen bonded water molecules (host)

• They look like ice, but unlike ice they can form at much higher temperatures

• Presence of gas molecules give extra attraction, hence stability, fixing the position of water molecules, i.e., freezing at temperatures higher than 0 °C

Gas

Hydrogen bonding

Van der Waals forces

Page 3: Advances in Avoiding Gas Hydrate Problems

5

Necessary Conditions

• The necessary conditions:

– Presence of water or ice

– Suitably sized gas/liquid molecules 

(such as C1, C2, C3, C4, CO2, N2, H2S, etc.)

– Suitable temperature and pressure conditions

• Temperature and pressure conditions is a function of gas/liquid and water compositions. Hydrate phase boundary

P

T

Hydrates

No Hydrates

6

Hydrates in Subsea Sediments

• There are massive 

quantities of gas 

hydrates in 

permafrost and 

ocean sediments. 

0

5

10

15

20

25

30

35

275 285 295 305 315 325 335 345 355T/K

P/M

Pa

0

5

10

15

20

25

30

35

275 285 295 305T/K

P/M

Pa

Dep

th

0

5

10

15

20

25

30

35

275 285 295 305 315 325 335 345 355T/K

P/M

Pa

0

5

10

15

20

25

30

35

275 285 295 305T/K

P/M

Pa

Dep

th

hydrates

no hydrates

hydrates no hydrates

Page 4: Advances in Avoiding Gas Hydrate Problems

7

Hydrate Stability Zone in Subsea Sediments

Sea Floor

273 283 293Temperature / K

Dep

th/M

etre

0

1500

500

1000

Zone ofGas Hydratesin Sediments

Hydrate PhaseBoundary

HydrothermalGradient

Geothermal Gradient

The Sediments are saturated with water

8

Hydrate Stability Zone in Permafrost

Depth of PermafrostPhaseBoundary

Zone ofGas Hydratesin Permafrost

Geothermal Gradient

Dep

th/M

etre

273 283 293Temperature / K0

1500

500

1000

263

GeothermalGradient inPermafrost

The Sediments are saturated with water

Permafrost

Page 5: Advances in Avoiding Gas Hydrate Problems

9

Methane Hydrate Discoveries

10

Methane Hydrates

Estimated at twice total fossil fuels

Page 6: Advances in Avoiding Gas Hydrate Problems

11

Scope

• Why hydrates can be dangerous• Techniques for avoiding gas hydrate problems• Hydrate safety margin monitoring• Hydrate early detection system• Kinetic hydrate inhibitors• Conventional testing techniques for KHIs• New testing techniques• KHI: challenges and opportunities• Conclusions

12

Why Hydrates Can be Dangerous• Hydrate formation can block pipelines, wellbore/tubing• Preventing production and/or normal operation• Prevent access to wellbore

• Therefore, a hydrate blockage should avoided/removed• There are various options associated with respect to 

avoiding/removing hydrate blockages

• There are serious risks associated with techniques used for removal of a hydrate blockage

Page 7: Advances in Avoiding Gas Hydrate Problems

13

Avoiding Hydrate Problems• Water removal (De‐Hydration)

• Increasing the system temperature– Insulation– Heating

• Reducing the system pressure

• Injection of thermodynamic inhibitors– Methanol, ethanol, glycols

• Using Low Dosage Hydrate Inhibitors– Kinetic hydrate inhibitors (KHI)– Anti‐Agglomerants (AA)

• Various combinations of the above

• Cold Flow

Pre

ssur

e

No Hydrates

HydratesWellhead conditions

Temperature

Downstreamconditions

14

Hydrate Safety Margin: Requirements

• Hydrate Stability Zone– Composition of hydrocarbon phase

– Hydrate inhibition characteristics of the aqueous 

– Salt 

– Chemical hydrate inhibitors

– Pressure and temperature profile and/or the worst operation conditions

– Computer simulation and/or P & T sensors

• Why there could be a risk of hydrates– Uncertainty in water cut

– Inhibitor partitioning in different phases

– Equipment malfunctioning and/or human error

– Changes to the system conditions

– Off‐spec Inhibitor

Pre

ss

ure

No Hydrates

Wellhead conditions

Temperature

Downstreamconditions

Hydrate Stability Zone

Hydrates

Safety Margin

Extra Safety Factor if Measuring Actual Concentration of Inhibitor

Page 8: Advances in Avoiding Gas Hydrate Problems

15

Determining Inhibitor Concentration (HydraCHEK)

• Measuring electrical conductivity (C) and acoustic velocity (V) in the produced water

• Temperature and pressure are also measured to account for their effect• The measured parameters are fed into an ANN system which in turn

gives salt, KHI and organic inhibitor concentrations within few seconds

Artificial Neural Network (ANN)

Produced watersample analyser

C

V

Vt

Salt, KHI, & inhibitor (MEG, MeOH…),concentrationT,P

16

Hydrate Safety Margin Monitoring

• Knowing the hydrocarbon composition the hydrate stability zone can be determined• Superimposing the operating conditions, safety margin is determined• Alternative option for conditions where there is no free water sample

Hydrate model / Correlation

Hydrocarboncomposition

Aqueous phasecomposition%MEG, %Salt, %MeOH, %KHI

Pressure

No Hydrates

Wellhead conditions

Temperature

Downstreamconditions

Overinhibited

Under inhibited

Hydrate risk

Low safety marginSafe/optimised

Over inhibitedExtra Safety Factor

Page 9: Advances in Avoiding Gas Hydrate Problems

17

Hydrate Inhibitor Monitoring System in a North Sea Gas Field• Location 

• 4 Gas bearing Eocene Structures 

• 40 ‐ 70 Km tie‐back 

• Reservoir Characteristics 

• Frigg Sandstone 

• Ф=30%, k=2000 ‐ 4000mD; Kv/Kh ≈ 1 

• Reservoir Pressure =155 bara 

• Temperature = 57 °C 

• C1 = 98%

• CGR = 2.1 E‐6 Sm3/Sm3

• Strong aquifer influx 

18

Hydrate Phase Boundary

20

60

100

140

180

0 3 6 9 12 15 18

Pressure / bara

Temperature/ oC

DWKF + EQ NaClC‐VOptimised with C‐VN1 manifold PT

• Methanol injection was reduced to less than 5 wt% from designed 28 wt%• Savings in the order of millions of GBP per year

Page 10: Advances in Avoiding Gas Hydrate Problems

19

Minimising Methanol Injection

Nuggets Gas Field – Pushing the Operational Barriers (SPE 166596)

• In 2010 the water production rate reached its maximum 

• On the other hand methanol was causing product contamination

• Methanol injection was reduced to practically zero– Methanol is being used only as a carrier fluid for corrosion inhibitor

• The system was operated inside the Hydrate Stability Zone– Hydrate Slurry Transport

– Salinity increase was used as a measure for monitoring hydrate formation and concentration of hydrates in the slurry

SPE 166596

20 SPE 166596

Field Production Profile

Page 11: Advances in Avoiding Gas Hydrate Problems

21

Operating Conditions

SPE 166596

22

Minimising Methanol Injection

SPE 166596

Monitoring change in salinity was used for determining the concentration of hydrates in the slurry, while operating inside the hydrate stability zone

24‐48 hours advanced warning prior to blockage

Page 12: Advances in Avoiding Gas Hydrate Problems

23

Results• The field life has been extended by three 

years with an incremental production of more than 3 million BOE in 2010‐2013 (2% increase in Recovery Factor)

• Steady production operations below nominal turndown and operating within hydrate zone 

• Significant reduction of Methanol usage 

• Field is still producing with the possibility of further prospects being tied‐in to the existing facilities

• Extra income in excess of 140 millions GBP (based on rough calculations) from sale of the gas, payback period of less than 1 day

• Online HydraCHEK is ready for field trials

Online HydraCHEK

24

Trials of Safety Margin Monitoring Techniques• High concentration of MEG by Statoil (Trondheim , Norway)

• KHI systems by Dolphin Energy (Total) in Qatar1

• MeOH + salt systems by Petronas in their FPSO lab (Mauritania)

• MEG + salt systems by NIGC (South Pars Gas Complex (SPGC) Field)2

• Methanol + salt, Total, Alwyn, North Sea3

• Methanol + salt, Woodgroup (Triton FPSO) and  Shell (Shearwater) North Sea

• Salt + Inhibitor, ConocoPhillips, North Sea

• Salt + MEG, Petronas (Turkmenistan) and Cameron (Pilot Plant, University of Manchester)

• KHI systems, Champion Technologies

• Salt + Methanol, NUGGETS, North Sea4

1. Lavallie, O., et al., Successful Field Application of an Inhibitor Concentration Detection System in Optimising the Kinetic HydrateInhibitor (KHI) Injection Rates and Reducing the Risks Associated with Hydrate Blockage, IPTC 13765, International PetroleumTechnology Conference held in Doha, Qatar, 7–9 Dec 2009.

2. Bonyad, H., et al., Field Evaluation of A Hydrate Inhibition Monitoring System. Presented at the 10th Offshore MediterraneanConference (OMC), Ravenna, Italy, 23-25 Mar 2011.

3. Macpherson, C., et al., Successful Deployment of a Novel Hydrate Inhibition Monitoring System in a North Sea Gas Field. Presentedat the 23rd International Oil Field Chemistry Symposium, 18 – 21. Mar 2012, Geilo, Norway.

4. Saha, P., Parsa, A. Abolarin, J. “NUGGETS Gas Field - Pushing the Operational Barriers”, SPE 166596, at the SPE Offshore EuropeOil and Gas Conference and Exhibition held in Aberdeen, UK, 3–6 September 2013.

Page 13: Advances in Avoiding Gas Hydrate Problems

25

Summary/Conclusions

• A robust and quick technique based on measuring electrical conductivity and acoustic velocity has been developed for determining concentration of salts and hydrate inhibitors in an aqueous phase

• The technique has been tested extensively (in various laboratories and fields)

• A hydrates safety margin monitoring technique based on measuring the amount of water in the gas phase has been developed

Pre

ss

ure

No Hydrates

Wellhead conditions

Temperature

Downstreamconditions

Hydrate Stability Zone

Hydrates

Safety Margin

26

Hydrate Early Detection System

• It is believed initial hydrate formation does not result in pipeline blockage in many systems

• Therefore, detecting the signs of initial hydrate formation could provide an early warning system

• Hydrates prefer large and round molecules (e.g., C3 and i‐C4 for sII hydrates) in their structures

• Hydrate formation results in a reduction in the concentration of large and round molecules in the gas phase

• Can we use this property as an early detection technique against background compositional changes? 

Page 14: Advances in Avoiding Gas Hydrate Problems

27

Detecting Early Signs of Hydrate Formation

• Hydrates prefer large and round molecules (e.g., C3 and i‐C4 in sII hydrates) in their structures

51264

Pre

ssur

e, M

Pa

Temperature, K

Methane

Ethane

Propane

I‐Butane

268 278 288 298273 283 293 3030.1

8040

1020

8

4

2

10.8

0.4

0.2

28

Hydrates in a Mature Field

• Very high gas to condensate ratios

• High water cut, hence switched to AA for Hydrate Blockage Prevention

• Online Gas Chromatograph was installed on gas outlet to see if hydrate formation can be detected

Philippe Glénat, Jean-Michel Munoz, Reza Haghi, Bahman Tohidi, Saeid Mazloum and Jinhai Yang, “FIELD TEST RESULTS OF MONITORING HYDRATES FORMATION BY GAS COMPOSITION CHANGES DURING GAS/CONDENSATE PRODUCTION WITH AA-LDHI”, Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), Beijing, China, 28 July - 1 August, 2014

Page 15: Advances in Avoiding Gas Hydrate Problems

29

ResultssII hydrates use C3 and iC4, hence an increase in C1/C3 and C1/iC4 ratios

Initially, the results look scattered

In , these are changes during day and night times

Hydrates are forming during time times when the temperature is low

31

Potential Implementation Configuration

Another

Another

Slug catcher

Hydrate formation results in a reduction in the concentration of large and round molecules in the gas phase

Page 16: Advances in Avoiding Gas Hydrate Problems

32

Summary/Conclusions

• A technique for detecting early signs of hydrate formation from monitoring changes in the gas composition has been developed and extensively tested in the lab

• Hydrate formation could be detected by monitoring the gas phase composition

• A field trial of the technique was successful

• If you had a near miss, it would be good to test the technique against gas compositional/volume data

• Integration of hydrate safety margin monitoring and early detection could provide a powerful tool for minimising inhibitor injection rate and improving the reliability of hydrate prevention techniques

33

Kinetic Hydrate Inhibitors (KHI)

• Affect hydrate nucleation & growth

• Two conventional formulations are– Poly(N‐Vinylcaprolactam) = PVCap

– Poly(N‐Vinylpyrrolidone) = PVP

N O

n

NO

n

I II Gas

Hydrogen bonding

Van der Waals forces

Page 17: Advances in Avoiding Gas Hydrate Problems

34

Avoiding Hydrate Problems‐Kinetic Hydrate InhibitorsP

ress

ure

Temperature

No Hydrates

Hydrates

Lw-LHC-H-V

Upstream conditions

Downstreamconditions

T

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

Time/min

P/p

sia

0

2

4

6

8

10

12

14

16

18

20

T/oC

P/psia

T/C

Induction Time

Induction time should be longer than the fluid residence time!

Test Conditions: Minimum Temperature & Maximum Pressure!!!

Tmin & Pmax

Kinetic Hydrate Inhibitors affect nucleation and/or growth stage(s)

35

KHI Performance Testing

3 vol% KHI+10 Wt% MEG

4 vol% KHI

4 vol% KHI + 15 wt% MEG + 25 ppm Corrosion Inhibitor

3 vol% KHI+10 Wt% MEGRepeat

Page 18: Advances in Avoiding Gas Hydrate Problems

36

KHIs: New CGI Approach Test Procedures

Growth/dissociation behaviour in a simple methane-water system

20

30

40

50

60

70

80

0 2 4 6 8 10 12

T / C

P /

bar

Cooling

Growth

Univariant equilibrium

(growth)Rapid heating / dissociaiton

Re-coolinginto HSZ

Univariant equilibrium

(growth)

F = 2C(H20,CH4) - 3P(H+L+G) + 2 = 1Nucleation vs Growth

Nucleation: stochastic in the absence of nucleation siteHydrate nuclei are small and cannot cause blockage

Growth is potentially ordered under low driving forceGrowth can result in large hydrate blockages

37

KHIs: New CGI Approach Test Procedures

Determination of CGI regions for 0.25 mass% PVCap with methane

60

65

70

75

80

0 5 10 15

T / C

P /

bar

RFR

60

65

70

75

80

0 5 10 15

T / C

P /

bar

RFR

60

65

70

75

80

0 5 10 15

T / C

P /

bar

RFR

Dissociation inside HSZ

60

65

70

75

80

0 5 10 15

T / C

P /

bar

RFR

Dissociation inside HSZ

60

65

70

75

80

0 5 10 15

T / C

P /

bar

CIRRGR

1

RFR

0

Dissociation inside HSZ

60

65

70

75

80

0 5 10 15

T / C

P /

bar

RFR

SDR

SDR = Slow Dissociation RegionCIR = Complete Inhibition RegionSGR = Slow Growth Rate regionRGR = Rapid Growth Region

VS

M-R

SGRRGR

Page 19: Advances in Avoiding Gas Hydrate Problems

38

New CGI Approach: Methane‐PVCap Systems

Experimental CGI regions for 1.0 mass% PVCap with methane

0

50

100

150

200

250

300

-2 2 6 10 14 18 22 26

T / °C

P /

bar

CIRRGR SDRVS1

S2

RFR

CGI boundaries at Tsub = ~5.3 C and ~7.2 C are shared with 0.5% PVCap. Related to underlying crystal growth patterns?

39

KHIs: Effect of Hydrate Structure

Page 20: Advances in Avoiding Gas Hydrate Problems

40

KHIs: Effect of KHI Formulation

Measured CGI regions for a range of commercial KHIs with a synthetic natural gas and real field condensate (real field development evaluation)

CGI regions can be used to robustly compare relative KHI hydrate inhibition performance at pipeline conditions

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

KHI G

KHI F

KHI E

KHI D

KHI C

KHI B

KHI A

Ts-II / C at 80 bar

RFR

RGR(M)

RGR(VS)

CIR (s-I)

CIR (s-II)

SDR

LF (%)

0.6%

1.2%

Hs-I Hs-II

RGR

SGR(M,S,VS)

41

KHIs: Opportunities and ChallengesKHI in Shut‐ins and Re‐Starts

Past

• One of the previously reported weaknesses was that KHIs cannot prevent hydrate formation in long shut‐ins

• Hence, pipeline pressure should be reduced to below hydrate stability pressure at seabed temperature

• A lot of gas flaring

• Slow re‐start to warm up the pipeline (potentially more gas flaring)

Now

• We now know that KHIs can act as thermodynamic inhibitor within CIR (Continuous Inhibition Region)

• Hence, increasing the shut‐in pressure, reducing the flaring

• Faster re‐start, as we have some measure on rate of hydrate formation

Page 21: Advances in Avoiding Gas Hydrate Problems

42

0

20

40

60

80

100

120

140

-5 0 5 10 15 20 25

P (

ba

ra)

T (°C)

3.0 vol% KHI

4.0 °C

Fail96 hr

CIR

SGR(VS)SGR(S)

2 x Pass96 hr

Fail12 hr

2 x Pass108 hr220 hr

s-I s-II

KHIs in Shut‐ins and Re‐Starts

Past: shut‐in and restart pressure around 10 barNow: shut‐in pressure around 32 bar, re‐start pressure 60 to 80 bar 

43

KHIs: Opportunities and ChallengesKHI in Produced Water Processing/Re‐Injection

Past

• KHIs are polymers and their cloud point could be around 40 °C

• They can cause problem in pumps inlet strainers in hot environment

• They can cause blockage in produced water re‐injection wells

Now

• We can now remove KHIs from produced water by a solvent extraction technique

• The technique is based on adding a solvent (e.g., organic high carbon‐chain alcohols) to the aqueous phase after 3‐phase separator

Page 22: Advances in Avoiding Gas Hydrate Problems

44

KHIs: MEG EquivalentComponents Mole%

Methane 56.14

Ethane 8.26

Propane 3.36

i‐Butane 0.56

n‐Butane 1.00

i‐Pentane 0.40

CO2 6.76

Nitrogen 0.35

n‐Pentane 0.34

n‐Heptane 0.42

n‐Octane 0.53

n‐Nonane 0.57

n‐Nonane 0.32

n‐Decane 0.98

Hydrate stability zone of the above fluid in the presence of condensed water.  The green line is the estimated Complete Inhibition Region (CIR) where KHI can provide indefinite inhibition, similar to thermodynamic inhibitors. The results showed that KHI can replace 26‐35 wt% MEG (with an average equivalent of 31.5 wt%), depending on the operating (or worst) conditions.  The actual performance of KHI is likely to be higher as KHI and MEG and are good synergic, but this will require further testing.

45

KHIs: Opportunities and ChallengesKHI in Produced Water Processing/Re‐Injection

Past

• KHI can replace large quantities of MEG (e.g., 20 to 40 wt%)

• This can result in a reduction in MEG regeneration units and/or handling higher water cuts, longer field life, higher recovery factor

• However, due to problems associated with gunking in MEG regeneration units, the full advantages of this combination have not been realised

Now

• We can now remove KHIs from produced water by a solvent extraction technique

• The technique is based on adding a solvent (e.g., organic high carbon‐chain alcohols) to the aqueous phase after 3‐phase separator

• The produced water, free of KHI, can be sent to MEG regeneration units

• The removed KHI can be recovered and reused

Page 23: Advances in Avoiding Gas Hydrate Problems

46

Conclusions• Technique for determining hydrate safety margin could minimise inhibitor 

injection rates, increase reliability, increase field life

• An online system has been developed and ready for field trial

• Early detection systems could play an important role in avoiding gas hydrate blockages and minimising inhibitor injection rates

• New testing techniques are reliable and repeatable

• It is now possible to predict if KHI could be an option for a certain development

• New understandings open new opportunities, e.g., shut‐in conditions, re‐starts, hydrates at top of pipelines, KHIs can replace large quantities of MEG

• KHI removal eliminates some of Produced Water Re‐Injection (PWRI) problems and allows combined KHI+MEG allocations

• KHI removal potential could play a major role in future KHI design

47

Some References & AcknowledgementsTohidi B., Anderson R., Mozaffar H., Tohidi F., “THE RETURN OF KINETIC HYDRATE INHIBITORS”, Proceedings of the 8th International Conference on Gas Hydrates (ICGH8‐2014), Beijing, China, 28 July ‐ 1 August, 2014.

Yang J., Mazloum S., Chapoy A., Tohidi B., “MINIMIZING HYDRATE INHIBITOR INJECTION RATES”, IPTC 17835‐MS, the International Petroleum Technology Conference held in Kuala Lumpur, Malaysia, 10‐12 December 2014. 

• We would like to take this opportunity and thank all our sponsors for their technical and financial support.

[email protected]

Page 24: Advances in Avoiding Gas Hydrate Problems

48https://www.youtube.com/watch?v=YB1GLbHCdVI