advanced study of column analogy

63
bO ADVANCED STUDY OF THE COLUMN ANALOGY METHOD by DAVID K. C. CHENG 5. S., Taiwan Provincial Taipei Institute of Technology, 1957 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Civil Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1964

Upload: rahmat-dwi-sutrisno

Post on 12-Jul-2016

18 views

Category:

Documents


4 download

DESCRIPTION

column

TRANSCRIPT

Page 1: Advanced Study of Column Analogy

bO

ADVANCED STUDY OF THE COLUMN ANALOGY METHOD

by

DAVID K. C. CHENG

5. S., Taiwan Provincial Taipei Institute of

Technology, 1957

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITYManhattan, Kansas

1964

Page 2: Advanced Study of Column Analogy

11

sir'^V TABLE OF CONTENTS

SYNOPSIS ... iii

INTRODUCT ION 1

DERIVATION 2

Formulas for a Symmetrical Cross Section 2

Formulas for an Unsymmetrical Cross Section 8

SIGN CONVENTION 12

GENERAL PROCEDURE 13

APPLICATION OF THE METHOD 14

Loaded Gable Frame 14

Loaded Double Gable Frame 17

CONCLUSIONS 53

ACKNOWLEDGMENT 54

NOTATION'

55

REFERENCES 57

Page 3: Advanced Study of Column Analogy

Ill

SYNOPSIS

The purpose of this report is to show a general derivation and

application of the method of column analogy. This method can be used

in finding the moments in third degree statically indeterminate struc-

tures. It is also very effective in calculating the stiffness and

carry-over factors for nonprismatic members for moment distribution.

The application section of this report shows how this method

can be applied to actual problems of finding moments and stiffness

and carry-over factors. A comparison of the results of the column

analogy method and the moment distribution method is presented, which

demonstrates the fact that these results are essentially identical

for the problem solved.

Page 4: Advanced Study of Column Analogy

INTRODUCTION

The method of column analogy was first discovered in 1930, by

Professor Hardy Cross (l, 6). This method can be used in computing

the moments in rigid frames and the stiffness and carry-over factors

of the moment distribution method. Professor Cross stated that, "The

column analogy is a mathematical identity between the moments pro-

duced by continuity in a beam, bent or arch and the fiber stresses

in a short column eccentrically loaded." (l)

The method of column analogy is one of the most important methods

used in solving rigid frames or any structures which can be considered

to be closed rings. These include pipes, culverts, tanks, arches,

bents, and single span fixed ended beams.

In general, the method of column analogy can be applied to the

three types of structures shown in Fig. 1. (6)

V L_i— :

(a) Single SpanFixed EndedBeam

(b) Bent

W» '-, .:.

(c) Culvert

Fig. 1

^Numbers in parentheses refer to corresponding items in the

References.

Page 5: Advanced Study of Column Analogy

The earth support is considered as a portion of the ring with

EI of infinite magnitude. These three types of structures are sug-

gestive of the many structures to which the method is applicable.

The column analogy method is used to compute the fiber stresses

in an analogous column loaded with the statically determinate moment

diagram from the reduced ring. The axis of the analogous column is

the same as that of the ring; the thickness of the analogous column

is equal to 1/EI of the ring. E and I can be either constant or vari-

able. The fiber stresses in the analogous column are numerically equal

to the moments required to restore continuity to the reduced ring struc-

ture. Thus by adding the determinate moment at a section to the fiber

stress in the analogous column at that section one obtains the total

moment in the actual structure for the section investigated.

DERIVATION

Formulas for a Symmetrical Cross Section

A ring structure as shown in Fig. 2(a) is being considered. The

ring is loaded with a set of forces P. Under the action of P, there

will exist shear, thrust (or tension) and moment at section A. F is

used to indicate the resultant of these shears, thrusts (or tension),

and moments on each side of section A.

After the ring is cut at A, the combined effect of the external

loads P, and the forces F, would keep it continuous at this section.

Assume that these two sets of forces, P and F, are acting separately.

(1) The loads ?1

, Y>2

, P„ , Pn _ 15

Pnwill cause

bending of the structure and produce statically determinate moment, Md ,

Page 6: Advanced Study of Column Analogy

(a) Geometry of closedring

A—~7\

// EI

V.

(b) Portion of the analogouscolumn of the ring

Fig. 2. A portion of theanalogous column

(c) A portion of the analogouscolumn loaded with M^

diagram and reactionforce F

Page 7: Advanced Study of Column Analogy

at any section throughout the ring. Owing to this moment there will

be relative rotation and relative displacement of both ends at the

section where it is cut. The rotation in a small length ds is

Md

* ds

dQ = Q»d EI

u;

In Fig. 2, since both A and A are very small, AA* and ABx y

are assumed to be mutually perpendicular, then

A ABC c-» AAA'D

^x d = y

( 2 )

AA« T§ KZ)

or

and,

Avd = X

AA" AB(3)

Solving equations (2) and (3) for Ad and A , yields

A , _ AA' (x) , .

and,

AB

Since 9 is very small, it can be assumed equal to its own

tangent, then

M. ' ds0= AA-ML then0d = f_J

AB J EIAB

Substitute into equations (4) and (5), then

^yd=/Md(ds)x ( 6 )J EI

and,

Page 8: Advanced Study of Column Analogy

A = I u{ ds )y•

( 7 )

xd J dEI

(2) As a result of the F forces, which are acting on both sides

of the section at A, after the ring is cut, there is a statically

indeterminate moment Mi

at every section throughout the whole ring.

By the same reasoning as found in section (l), the rotation and de-

formation caused by the indeterminate moment WL, are

Q. = I M. ( ds )J EI

(8)

and,

yi = !m. (ds ) ..O)

J XEI

xi = (m. ( ds )(10)

J EI

Since the forces P and F are assumed to keep the ring continuous,

the total rotation and total displacement due to both determinate

moment, NL, and indeterminate moment, M._, must be equal to zero. Hence,

G , + 0. =0 (n)d l

A . +A • = (12)yd *-*yi

A . +A . = (I 3 )" xd xi

or substituting equations (l), (6), (7), (8), (9), and (10) into

equations (ll), (12), and (13) respectively.

Page 9: Advanced Study of Column Analogy

(m (ds) + (m. (ds) =0 (14)* EI J EI

JM, (ds)x + [m. (ds)x = (15)J EI J

EI

[m (ds)y + (m. (ds)y = (16)J EI J EI

The above equations are called the equations of moments in a

closed ring.

(3) Take a small element ds at some distances x and y along

the X and Y axes respectively from the centroid of the analogous column.

M, is the load acting on the top of the analogous column and F is the

reaction force acting at the bottom of the column, as shown in Fig. 2(c).

ds/EI is the area of the portion of the column. Considering the con-

ditions of equilibrium, the following equations are obtained.

IV =

or,

and,

or.

M ( ds ) + F( ds ) = (17)EI EI

Zm = oXX

M ( ds )y + F( ds)y =0 (18)d

EI EI

and,

Page 10: Advanced Study of Column Analogy

or.

IM =* yy

M, ( ds )x + F( ds )x = (19)EI EI

Integrating to include the entire column, equations (17),

(18), and (19) can be written respectively as

/m ( ds ) + (f( ds ) = (20)J d

EI J EI

Jm ( ds )y + ( F( ds )y =J d EI ^ EI (21)

fM ( ds )x +JF( ds )x = (22)

J dEI 'EI

In computing the fiber stresses F of a column, either con-

centrically loaded or eccentrically loaded, the following formula is

used.

M • y M * x

F =£ + -^ + -*A I I

* y

In comparing equations (14), (15), and (16), and equations (20),

(21), and (22), Mj_ is equal to F. The final moment in the ring is

equal to M^ - M. , or M - F. This is the basic principle of the column

analogy method. (6)

Page 11: Advanced Study of Column Analogy

Formulas for an Unsymmetrical Cross Section

The formulas for an unsymmetrical cross section have been de-

rived by Chu-Kia Wang as follows (8). Assume a column as shown in

Fig. 3a, which is subjected to a set of downward loads P^ P^ P3

>

acting on the points (Xp Y^, (X2 , Y

2) , and (Xg, Yg), etc.

These loads can be transferred to the centroid of the cross section of

the column as indicated in Fig. 3b, as a downward concentric load and

one bending moment about each axis.

(x2_iVol

(x3 ,y3 )

l(x1,y

1)x

(a) A column loaded with

eccentric loads

(b) The transformation

of load

Fig. 3. Eccentrically loaded column

and its transformation.

According to the principles of statics, after the transfer, the

new load P, and the new moments, Mx

and M , may be written as

(24a)P = P

x+ P

2+ P

3

Page 12: Advanced Study of Column Analogy

\ =Vl + P

2y2+ P

3Y3 < 24b >

\ = P1X1+ P

2X2+ P

3X3

(24C >

The pressure F at any point can be expressed as

F = a + bx + cy (25)

where the constants a, b, and c can be determined from the three

equations of statics, as follows:

P =] FdA (26a)'

=j

F(dA)(y) (26b)J

=J

F(dA)(x) (26c)y

Substituting equation (25) into equation (26a), then

A

P =

'o

=j F(dA)J

rA

=J

(a + bx + cy)dA

/A /A /A=

j dA + (x)dA +1 (y)dA

Since

fJ dA = A

Page 13: Advanced Study of Column Analogy

10

('x)dA =J

fA

J(y)dA =

Hence.

-J*dA

= aA (27)

Substituting equation (25) into equation (26b), then

M =JF(dA)y

'0

r

r

=1 (a + bx + cy)(dA)y

_(A2

-J (ay + bxy + cy )dA

Ik ik(k

2= a y(dA) + bj (xy)dA + c

J (y )dA

= + b(l ) + c(l )xy x

b(l ) + c(l ) (28)xy x

Substituting equation (25) into equation (26c), then

=JF(dA)x

y -o

rk- l (a + bx + cy)(dA)xJ

Page 14: Advanced Study of Column Analogy

11

-\M = \ (ax + bx + cxy)dAy

(A /A

9/A

= aJ

(x)dA + bj (x )dA + cj (xy)dA

= + b(l ) + c(l )v

y xy

- b(l ) + c(l )

Y xy(29)

Solving equations (27), (28), and (29) for the constants a, b, and c.

_ Pa "A

M.. -xy

b = Y X Ix.

r-2-xy

Iv(1

- T~rr '

x y

(Mx

- M^

xy

2

xy

x y

Let

xyM' = M - M (

y)

x x y jy

i

M« = M _ M (

xy)

y y x i

I = I (1x x^ I ' I

X y

Page 15: Advanced Study of Column Analogy

12

Txv2

I =1 (1 --^ )

y y i • i

then

A

My

I

y

Mx

c =,

I

Substitute the values of a, b, and c into equation (25),

theni

'

FP

+ ^_ (x)+ -i— M (30)

SIGN CONVENTION

The sign convention of this report is that used by Chu-Kia

Wang. (7) This convention is known by most engineers as the regular

beam sign convention.

(1) Loading on the top of column is downward if M, (statical

moment, or moment due to the applied loading on the simple beam AB as

determined by the law of statics) is positive, which means that it

causes compression on the outside. The definition of the terms inside

and outside is as indicated in Fig. 4.

Page 16: Advanced Study of Column Analogy

13

outside

| 1

^ inside p

outside

Fig. 4. Simple Ring Type Structure

(2) Upward pressure on the bottom of column, M. (indeterminate

moment, or moment to be determined to satisfy the conditions of

geometry), is positive.

(3) The moment at any point in the structure is equal to

M = M . - M. , which is positive if it causes compression on the outside.

(4) The sign of the moment-arms, x and y, is taken from the

coordinate system. That is, positive up and to the right from the axis

of the coordinates.

GENERAL PROCEDURE

There are five steps in finding moments by the method of the

column analogy.

(1) Make the ring (or any structure which can be considered

as a ring) statically determinate.

(2) Compute the statically determinate moment Md

, which is

produced by the external loads P, according to the laws of statics.

(3) Apply the M, diagram which is obtained in the second step,

as a load, on the top of the analogous column.

Page 17: Advanced Study of Column Analogy

14

(4) Compute the fiber stresses in the analogous column by the

laws of statics.

(5) The final moment in the ring (or any structure which can

be considered as a ring) is

M = M , - M.d 1

or,

M = Md

- F

In a manner similar to that for finding moments, the stiffness

and carry-over factors for members with either constant or variable

cross section can also be found by using the method of column analogy.

The details of finding these factors are illustrated in the section,

Applications of the Method.

APPLICATION OF THE METHOD

Loaded Gable Frame

Assume a gable frame with one axis of symmetry and loaded with

a 15 Kip external concentrated load as indicated in Fig. 5a. Assume

that ends A and E of the frame are fixed. The dimensions of each member

of the frame are given in Fig. 5a.

•The properties of the analogous column of Fig. 5b are

(assume EI = l):

A = 2(l/2 x 36)*+ 2(30) = 96

Y = 36(10) + 60(35) = 2^^,96

Page 18: Advanced Study of Column Analogy

15

I =2 -J2 (1)(30)3+ 30(1)(9.4)

2+

1 / / w v2,20 N ,o

2-75 (l/2)(36) (35) + 18(15. 6T = 19.78

I = 2(30)(30)2+ 2 -i5(l/2)(36) 2

(g) + 18(15)'

= 54,000 + 2(1350 + 4050)

= 64,800.00

(a) Loaded Gable Frame (b)- Analogous-columnsection(considering EI = 1)

Fig. 5

Cut the right support, E, of the frame in order to make the

whole frame a determinate structure as shown in Fig. 6a. The de-

terminate moment diagram, which is produced by the external load, is

treated as a load acting on the top of the analogous column as shown

in Fig. 6b.

The total load on the top of the analogous column, and the

moments about the axes of the cross section of the analogous column

are calculated to be:

Page 19: Advanced Study of Column Analogy

16

15

225

15

(300)

(3001

(a) Basic determinatestructure

(b) Analogous column withM. diagram as a load

Fig. 6

Page 20: Advanced Study of Column Analogy

17

P * 1/2(18)(150) + 30(300)

= 10350.00

M = 30(300)(9.4) - 1/2(18)(150)(8.9)

= 84,600 - 12,000

= 72,600.00 (clockwise)

My = 30(300)(30) + 1/2(18)(150)(25)

= 270,000 + 33,750

= 303,750.00 (clockwise)

The calculations and the results are shown in Table 1.

Loaded Double Gable Frame

The following double bay gable frame, shown in Fig. 7, is

analyzed by both the column analogy method and the moment distribution

method

.

30.0'

20.0*

1.0 K/foot

45.0' 20.0'_ 45.0'

Fig. 7. Double bay gable frame

Page 21: Advanced Study of Column Analogy

<xu,

w»Jto<oUJXHtt,

O

O>-)

Xo<ai

H<

ai:>O

UJXH

i

UJ-]

<

5

x

a.

XI

-pc

CO

CO r-CO CM *****

CO1

.

CM1 • i—

i

^-^ ^_^ CO •

CO .—

i

i—l CO .-I

1 • 1 • i r- in •

00 CM *• ' « —* coO CO o r- CO ino + o i 1 •—

1

i i

CO CO1 II 1 it

O 11 . O 1!

t—i

1 CO ST t- •—I T •• • CM * • COO CO o CM ^r r- o inO CO CM t o • CM +

CO CO1

11

CO

+ 11 + -< + ll

CO in . 00 co in• in • * • II • •

r» • r- o r- i> oo o o •vT o o o Tr-4 <tf >—i •-H r-l <-< .-i

1 "-) 1 1 1 + i +

in in in• •

o o osT >* <tf

o oCO

i

CO1 o

o o oiO o in o in o> o o o r- oCO CO CO 00 co coo sr o T o <tfm \Q CO vO CO vO

r-4

o q- •o • <*. c3 (>

ooCO

I

oT vQ .

CM • in1 in CM

O o o o OlOO CO o CO O CO«3 r~ mo r- mo r-

#-. «\ A•i *

CM o CM o CMJCJnr- <—i r- —t r-fr-i

00 00 00• • •

r- r- t>c3 cy o

o

ooCOI

pq u

-.-

II

oCO+

oCM

in

oo

r-o

18

«~^

00

Is-

in coi •

--' r-in

i +O II "

CO•

r-lOO 1oII

inCO .• o

r- vO ~»*—*

1 +

in

o3-.—

i

+II

oCO-;-_

oin oF- oco 00c -5CO M0

o1

11

*~N

^r•

*tCM

crbO COvO r»

«" »CM or~ .—1

co•

r»Oi

o

uJ

Page 22: Advanced Study of Column Analogy

19

Solution by the Column Analogy Method

I. Properties of the analogous column section . Take a portion

ABCD of the frame as a free body with its two ends fixed as shown in

Fig. 8(a). Solve this part of the frame as an independent structure by

the method of column analogy. The length of the analogous column

section is the same as that of the actual frame. The width of the

analogous column section is a constant l/EI, as shown in Fig. 8(b).

It will be convenient to let EI = 1, so that the width at every point

of the analogous column is one.

Area of column section = (30)(l.O) + (25)(l.O) + (47.5)(l.O)

= 102.5

- _ (30)(15) + ' 25)(37.5) + (47.5)(37.5)

102-5

= 3168 - 5 = 31 feet102.5

x = (25) (10) + (47.5)(42.5)

102.5

= 2268.7 = 22.1 feet (from left)102.5

3

Ix= -J^ 30^ (30)(16)

2+ -^(25)

3(§)

2+ (25}(6.5)

+ -j^ 47 ' 5 )

3(~^)

2+ (47.5)(6.5)

2

= (2250 + 7680) + (469 + 1056) + (890 + 2006)

= 14,351.0

Page 23: Advanced Study of Column Analogy

20

1 3 9I = 12(30)(1.0) + (305(22.33)

+ T2(25) Hlr> + (25)(12.33)2

+ -^(47.5)3

( ~~) 2+ (47.5)(20.4/

= 46,932.6

Ixy

= (30)(-22.l)(-16.0) + (25)(-12.l)[6.5)

+ (47.5)(20.4)(6.5)

= 10,608.0 - 1966.3 + 6298.5

= 14,940.2

I2

i' =i (i - *y)

I Ix y

= 14351.0(1 -

( 14351. 0)(46932.6)

= 14351.0(1 - 0.333)

= 14351.0(0.667)

= 9572.1

I2

I .= 1 1 - *Y)

y y I • IJ

x y

= 46932.6(0.667)

= 31304.0

Page 24: Advanced Study of Column Analogy

21

c

^^"^\ D

fB

' ~ " ^31.0

22.1s

1 A

(a ) Free-body (b) Analogous columnsection

Fig. 8

(a) Load on theanalogous column

1.0 (radian)

(b) Load after transfer tothe centroid of theanalogous column section

Fig. 9

Page 25: Advanced Study of Column Analogy

22

II. Stiffness and carry-over factors . A load of 1 radian is

applied at the right end, D, of the analogous column section and trans-

ferred to the centroid of the section as a concentrated load and two

moments as indicated in Fig. 9(a) and (b), from which the following

relationships are obtained.

M = (l.0)(-1.0) = -1.0

My= (1.0)(42.9) = 42.9

M ° = M - M ( —22

)x x y I

;

y

' - -U.O) - (42.9X |||^ ,

= -16.9

M'

= M - M (XY

)

Y y x ix

. 42.9 - U.0)(^g)

= 42.9 + 1.C4

= 44.0

The joint moments are tabulated in Table 2.

The stiffness factor at D and the different carry-over factors

are obtained as follows:

The stiffness factor at D is SD 0.072.

The carry-over factors are:

(1) From D to C.

0.017°DC ~ 0.072 °* 236

Page 26: Advanced Study of Column Analogy

5

2<

cc

wXHOH

Qaum<

O">

3CU<UJ

H<

UJ

o

mi

CM

UJ1-3

CQ<

Q. <

O

CM

oO

I

o•

H1

r-t

• COCM f—i

C'- > o• iD oo O •

l-H

1

o

oo

r-<—

i

od+

r--4 sr• CM

CM or- •

in oo 1

sr COo o00 or-t •

co o1

11

r-vO

lf> o >o \£>

CM o oo o1—

1

o o

U

oCMod+

r-vO

oo

OQ

CO

ooo+

COoo

11

23

COCOo•

o+

.

c>•

r-<

CO1

f-^ oO t-H \Q• • o

^G CM •

l-H

1

oo 11

•-(

CM oCM

1 <sT •—I

*

oCO

COoo .—1 •

CO o<sT 1*

11

r-vOooo

o

o

<

Page 27: Advanced Study of Column Analogy

24

(2) From D to B.

r - 0-020 _ n 97oCDB " 0.072 °* 278

(3) From D to A.

0.038 „ ___°DA 0.072

III. Moments at each joint due to the applied loading . Cut the

left end A of the free-body ABCD, as a redundant and make the whole

free-body a determinate structure, as indicated in Fig. 10(a). The

determinate -moment diagram of the free-body is plotted on the com-

pression side as shown in Fig. 10(b). Use this diagram as a load

acting on the top of the analogous column.

P = —(25.0) (200.0) + (47.5)(200.0) - f- (45.0)(252.13)

+ _i(47.5)(2112.5) - 200.0)2

= 49051.0

M = (1666.67)(7.1) - (9500.0 - 7563.75)(20.4)

- (45448. 0)(45 - 15 - 2.1)

= -154262.5 (counterclockwise)

Mx= -(16666. 67)(10.25) - (9500.0 - 7563.75)(6.5)

- (45448. 0)(4.0)

= -211461.0 (counterclockwise)

Page 28: Advanced Study of Column Analogy

25

M • = M . M ( -£L-

)

x x y Iy

,~ -w 14940.0 n

= -211461.0 - (-1542o2.5)(-46932#6'-)

M ' = -162094.0

M - M (

y x I

xy

14940.0 .

-154262.5 - (-211461. 0)t 14351 . )

= 65657.0

1.0 K/foot

I(l)(20-+45)'2

= 2112.5

(a) Loaded determinate frame (b) M. diagram, plotted on the

compression side of the frame

Fig. 10

Page 29: Advanced Study of Column Analogy

26

Q<Oi-J

QU!i—

(

-Ja.a.<£

OJXHOHUJIDQQOpa<

o

o

Xo<

o

PL)

XH

COO00ovOOJ

I I

ON

on

tf CMON r- COo iD oo •

CM vOvf) .-H

<-t +11

CM CMt- Our> •

CJN r~-

C0CM

i

« ONc

.

II—

COON

nO.—I

+II

CO:

O .—

i

>9 CMQN r» C»)

o if) CO*N ON •

CM TvCt~.

CMin

oCN+

5o .-•

CO TH •

co ^ri

nO

i

nO

I

o,|<

if)

c if)

i if) •

<— • COin CM r»c O ^rON r-H

V 11

If)

If)

COr-

inin

COo

if)

in

COr-

if)

CM

CMI

I

U)-ICO.

<£H

C

o-)

u DO

Page 30: Advanced Study of Column Analogy

27

the

frame. as shown in Pig. ll(a).

ture by the column

:n section is the

same i i- ~ s c ° :umn

section is a constant It will be con-

ic let EI = ] rY section of "ens analo-

column section is 1

ion = (3( + ..'; .5] .1.0]

>.5

_LiL_.~ 23 :om rig/.

102.5

, _ :. 1)

: -:• (25)(37.5) * (47.5)(37-5;.

102.5

= 3 (from the

_ ] ;3o.o)(i<

s)3

( t~—

;

2- -s)

2

1/ H I . S>

+ _i_(25.0)3(4|-)

2+ (25.0}(6.5)

2

12 25

= 143.

Page 31: Advanced Study of Column Analogy

28

Y

23.84'

p

^̂"~*""-^

X

31.0'

G

H

(a) Free-body (b) Analogous columnsection

Fig. 11

1.0 (radian)

//TV^:V,

(a) Load on the analogouscolumn (b) Load after transfer to

the centroid of the anal-

ogous column section

Fig. 12

Page 32: Advanced Study of Column Analogy

29

I =-Y2(30.0)(1.0)

3+ (30.0)(23.84)

2

+ -j^47.5)3

{ ^775")2+ (47.5)(1.34)

2

+ ^-(25.0)3(-||)

2+ (25.0)(31.16)

2

50274.4

I = (25)(1.0)(-31.16)(6.5) + (47.5)(1.0)(1.34)(6.5)xy

+ (30)(1.0)(23.84)(-16.0)

= -16140.6»

2

I •= I (1 - ^X X j

jx y

)

= 14351.0 1 -

(16140.6)2

J.*"TO %J J. • \J JL

(14351.0)(50274.4)

= 9170.3

I*=I (l - ^)

y. y iix y

= 50274.4 1 -(16140. 6)

2

(14351.0) (50274.4)

= 32125.3

By the same technique and procedure which have been used previously,

a load of 1 radian is applied at the left end, D, of the analogous column

section and transferred to the centroid of the section as a concentrated

Page 33: Advanced Study of Column Analogy

30

load and two moments as denoted in Fig. 12(a) and (b). The moments

at each point and stiffness factor at D, and carry-over factors from

D to different points are obtained as follow:

Mv = (1.0)(-1.0) = -1.0

M = (1.0X-41.17) = -41.17

IxvM = M - M (

—ii

)x x y i

'

= -(1.0) - (41.17) - (I6140 ' 6 >

50274.4

= -14.20

I

m = m - m (xy

)

y y x iX

-<- l7> - <-'-<»«$

= -42.30

The stiffness factor at D, Sq = -0.065

The carry-over factors are:

(1) From D to F.

(2) From D to G.

(3) From D to H.

rr= 0-0202 = 0.311

DG 0.0650

= 0-0263 =CDH 0.0650 °* 405

Page 34: Advanced Study of Column Analogy

gt-H

HO<Q<O-1

<i—

1

oHai

QXaa.Q

&-

O<->

Xo<

§

X

ai

CQ<

X

Sin-.

31

CM COin in O vOvO r-i CM CM

O O O• • • •

i

O1

O O1

^-> ^—s *-^ OO •

• • • r-i

1 r-l

r—

1

I

CO1

- - • *^_^ • r- •v_^ O ^-^ O*** O \0 y***» t-H ^"*s • <""* •

r~ <-< r~ CM O f—1 O O COCNJ .-1 CM •—

1

O CM f» CM 5 S• Q\ O • • • •—1 •

T • V O T O • <tf .

r—t O •—

1

1 #—

1

«-l

1

11

1

II

1

II II

vO vO *~^

«-H r-i T <tf

• • 00 00*—

t

>-H • •<g- CM CO CO CO CO

1 CO 1 CM • CM CO• in in •sr «

iT) CM O CM t—

1

in >->

cm ^r O —

1

t^ O r-i CO O CM CO00 i-h in 00 CM CM CO CM CO r-, O

CM O CO O • CO • • CM •

c5 CO CM • CM CM CO OT ^r O ^r 1 ^ 1

1

II

1

II II II

r-vO

in t- r- r»vO v£> \£>

r-H CM O O O OO O.-* O O

• • •

11 O O

O O O

a UU O X

Page 35: Advanced Study of Column Analogy

32

IV. Moments at each joint of the free-body DFGH, due to the

applied load . Cut the right end H of the free-body DFGH, and make

the whole free-body a determinate structure, as indicated in Fig. 13(a).

The determinate moment diagram of the free-body is plotted on the com-

pression side as shown in Fig. 13(b). Use this diagram as a load

acting on the top of the analogous column.

P =-|-(45.0)( 1012.5) + (1012.5)(25) - ~(20)(50)

+ -~(25.0)(2112.5 - 1012.5)

= 53583.33 (upward)

Mx= -(15187.5)(11.5) - (25312.5 - 666.67)(6.5) - (13750)(4.0)

= -389845.0 (counterclockwise)

M = (15187. 5)(9. 92) + (25312.5 - 666.67)(31.16)

+ (13750.0)(34.5)

= 1,257,404.0 (clockwise)

M ' = M - M ( —^1—

)

x x y IJ

y

»x . , -16140.6 .

Mx

= -(389854.0) - ( 1257404. 0)( 50274.4)

- -27185.6

Page 36: Advanced Study of Column Analogy

33

M '• = M - M (xy

)y y x i

X

= 1257404.0 - (-389854. 0)(-I 6140 - 6

)

14351.0'

- 818818.2

1.0 K/foot

3

H

|(1.0)(45)'

i(l.0)(65)

= 2112.5

(a) Loaded frame

Fig. 13

(b) M, diagram, plotted on

the compression side

The calculations and the resulting moments at each joint of the

free-body due to the applied load are shown in Table 5.

Page 37: Advanced Study of Column Analogy

CO

SQLUI—

l

-1aa.<ai•x(-

OHWQIPQit,

o

o>-)

Xo<ai

H

ai

o

I

I

in

UJ-JCO<

-1-

OCM

COCOin

vO

if)

CO

t-c\

I

o

ID

CM

CMI

nOON

CM

II

if) ,

CM oi—

I

inCM oCO «—

t

COCO•

r-coo

o•—I •0N w—I

I

vD

aII -_4

C»J

If) COcm CO^<f\ ONCO CO

ini

vO vOr- r-

in • •

• CM CMCM CM CMO in in

in•

CMHOl-H

I

inCO

COCO

o• o

if) r~-

CO #—

*

vO.—

>

ON ONr» •

t\ CM

11

co

nO

CMCMin

COCO

ovO

34

o•

CMCMCMf-i

1

o"•

w-\

CO1

*-N ovO •• o

in P- xOCO t-t •

#—

i

ON •—

1

r- ONCM

|

+II

nTCO•

COCM

*-> COCM •

• in coCO CM CO•—

1

<—1 •

CO cm r-CO CO ot—

1

vOCO

II

vOr-•

CMCMin

ou. o

Page 38: Advanced Study of Column Analogy

35

V. Moments at each joint due to sidesway at point D .

Fig. 14. Sidesway at D

vJxy^f- + H/y2(-ff-)

+ M Jy

ds _ ,.

ds

EI= AH

,, i ds , .. ( ds , ,, / dsvlx— + H

Jy— + mJ—

Since Jxda = 0, jyda = 0, then

vjx 2

-ff-+ Hjxy

=

ds

EI=

vJxy ^f

. + Hjy2 -|!

_ .Ah

Page 39: Advanced Study of Column Analogy

36

or.

V(V + H(lxy

}= °

V(I ) + H(I ) =AHxy' x'

Solve for V and H.

-AH I

v = -rr-( -f*->X

AHH = 7

\

M = M . - M.d i

= Md

- (Vx + Hy) (G)

The calculations and the resulting moments at each joint of

the free-body due to sidesway at D, are indicated in Table 6.

By the same technique which has been used above, when sidesway

exists at the joint D of the right side free-body DFGH, the following

relationships and the moments at each joint of the free-body due to

this sidesway can be obtained. (7)

VI + HI =0y xy

VI + HI = -(AH)xy x

Solve for V and H from these two equations above, then

Page 40: Advanced Study of Column Analogy

S

>

X X< 1—

1

II

^.Q >b~ X<><»COai • • •• •Qi-<

CO

oH04 <—

-

3 XQ ^-^

<—-.

QO > XCO X 1—1

< I—

1

U-. XO < V£

1 1—

1

h-

1

11o•-J

«*—•*

XX **—

'

u ><ai

H<

£ai2gosUJ •ua: asH .

1

vO

LU.-1

pa<H

•pc•Hot->

37

CMin IT)

COin

I

o

I

o of—

i

i

CM 00r» cmin •-io i

in

CM

o•sr •

X o o<

1

COr—

(

CO

1—

1

1

11

CM1

>—

»

•>>CN

O i-(.

v ino COV tt—

i

r-i-«*^•sTo o

X CO •

i

f—

I

vO00 +

CMCM

I

CQ

COI

CM COr- cmin -*o

II

CMr-na-

CMCM00

I

—' II

CMCM

I

00 oo

Page 41: Advanced Study of Column Analogy

38

H , xyV T" < i )

y x

h =-AHI

'

x

M = M ,- M.

d i

Fig. 15. Sidesway at D

= M - (Vx + H'y)

The calculations and the resulting moments at each joint of the

free-body due to sidesway at D, are obtained as shown in Table 7.

The fixed-end moment of bar DE, due to sidesway at D, is ob-

tained as follows:

Fig. 16. Fixed-end moment of bar DE, due

to sidesway at joint D

Page 42: Advanced Study of Column Analogy

39

PL!

UJX

I

U!-I

COCO

r-CM

CMCO

I

iT)

CO

COCOCO

I

CO

srCOCO

I

Q

5CO

'x

o CO• 00

C J •

r* CO(H ino CM

•^ 11

oTrH

^.—•*"- \Do •

X • CM

<;o in

i >-\ +o11

"N COo 00

o COr- lOt-t CMo +

COI

o

OCM

^ 11

00

oHUJ

QXoIX,

Q

O*->

g<UJ

X

X<

>

1

if)

COT.—

1

vO1-4

lD •

CM o«—

(

CMCM iT)

CO 1

CMi

\D o

vO

iT)

CM

*Q co

CMt-

vO

CM+

CO•

COCM

I

vO

olOCOT1-1

^ CMin oCM •»-i oCM COCO <—

1

<3"

co•

COCM

*•**

vO o• •

c r-H

sr in#—

i

COO ^T—. t-i

CM^ O

in oX CM CO

<#—

i

CMCO

+11

c

oO

Page 43: Advanced Study of Column Analogy

40

MDE= M

ED" 6EI (^H)

302

= 207.27

Distributions of fixed-end moment at joint D, due to the applied

load and sidesway at D are indicated in Tables 8 and 9. The ratio of

shear stresses, due to the applied load and the sidesway at D, is

—(1113.14 - 531.48 + 547.17 + 273.59 + 1216.9 - 1330.08)k = - _3pJ

-|q(338.57 - 149.27 + 197.37 + 50.74 + 336.45 - 396.40)

= - 3.51•v

M = Moment, due to the applied load + (-3.51) (Moment, due to side-

sway at D)

M^ 1113.14 - (3.51)(338.57) = -7.50

MBA= -MBC

= -531.48 - (3.51)(-149.28) = -7.47

Mqb = -MqD = -507.06 - (3.51)(-107.1) = -131.08

MDC= -2401.74 - (3.51)(-649.61) = -121.56

MDE = 547.17 - (3.51)(107.37) = 170.00

MdF = 1854.57 - (3.51)(542.27) = -48.8

MFD

= MFG

= - 1102 - 33 " (3.51)(-382.12) = -238.16

%F = %H = - 1050 ' 51 " (3.5l)(-289.82) = -33.20

MHG= -1330.08 - (3.5l)(-396.4) = -61.32

MED= 273.59 - (3.51)(50.74) = 95.49

Page 44: Advanced Study of Column Analogy

41

CO

_*Z2A

vO

CO

coCM

4

inON

^^.Q AiM?

u1

y °oc-

t—\

CMr—1

co

T!(1) T5C <U

•H +->

ro +->

-t-> OXI -Ho a»> #%

6 T3ro oM .cen -t->

(D <D

•H ETI >•+-> ai «c o -oQJ .-H .1-1

£ ro CO

o cE ro c

cCT> C •rH

C E 10

.r-l 3 01

-t-> i-H or-i O M3 o ato B(1J d) ou sz o

+»<u GJ

x: >-x:H X! -^

u

en•H

*/77"T*~

CQ

<

oin

Page 45: Advanced Study of Column Analogy

42

CO CDm IT) in

LJ o Orv.

(VI

+

io

cu

4-

m CO CM •0

a * CM QI I 6

K cuO cu

T '

OrO*i

1

KT in en

n w kO "O

+ 3

CO

8(J

o4"

cu

4-

vT iO co

Qll

iooj ro CO

hJ is o oo ^ cu

. J 1I

T|

nQ.

<13

>*•

<M in ro

rorOCMO

hi a. O O OX

U.4- + 4 +

1—

Q CM

6

o jo

S 3m roco o

rorocvi

o

hii 1 i 1

u.

o

mco

OO

ocu

6

oc\j

COO

rO

cdcdCM

1*.

in•rin00

* + +•O r<>

*" rv.

Q Q Id

Q d

CO

o in m

£ +|4-

CO <r o-

•^ coo n IV.

hJ U o (VI (7) CDCM

oLl u o O CD

CM CM

1+ 1

h_ a* CM CD

Oa

rOCM

CO —^ rv

Orvi

O7 u O mO U

* + + 4-

P *J- OJ 10

m Q cu 2 5 Orv

OU O ^ mcc. 1 i i 1

<o00 OrO —

oO

Q

mCD

r—(M

O+

cu C1

OO 1-

+ +

P3m+

o <o O oO

10 ^ •ef:

< CU ~ $ oCD O v T m

CO1 1 1

1

Ld r-rv. r-— <D

•»

_l C\J CO CO ro

CD < < O•|

m m— o>4-

uzgS^H-J.mi- r-

f ou Zw Ul ^ LD

zo->

Ul2Ll.

6u

Ik

d It<E Hi

Ll)

mo dbi

CMrvOCM

T

romco-

in

4-

(v

m+

I 13

X

mO"»

di

CM COrv. CD

1 101

OT.CDCDro

1

m9

Iro

d4.

mV 00

* 00

mv.CDroro

+

d

5

Lu

19 O1

mcr <o

rC ro^- CO

+ 7

in^r.CDroro

!

1I/)

UJQcn

or-

Ll.

15U.

TCM

d4-

O cuCM ro

l»: CD'

ro —, -a-

' 4-

CM

cm"

O0ro

4-

QU.

CM

d1

O cu

CM <0

n: cdrO —T+ 1

CM

cm'

COro

1

hJDQ

Q

U.

Q

inco

Od

<rCM

d

•o ^.ro *rm cmtv inCM —4- 1

CM

CMct-

in

-t-

Q!-

<

hJ

UJ

Q

rom

d

roCD

d

0g q

CM m+ 1

rv10

O4-

o

ruiv.

Od

COCM

d

O Ot, mCM CD'

in cc

4- 1

5CDVCD

1

LlO

U

oCO10CM

d1-

OO -

14-

Orv:

O4-

oFD

CDU

co•0CM

d

-.

s

Or--'

O1

QCD

OCO

COrv.

CM

d4-

CM CD— ">

•« CD

1 4-

CM

CD

+

tD

z

COf-CM

d1

CM CD

CD

+ 1

rv.

CM

CD

T

LU_lCD < a

<

tvCMnb

1

cm mrO CU

<ji CD

54 4-

rv.

m06roro+

CO

Zo->

a.UJCD•2

UJS

u.

u.-

uU-'

d

2 JUJ <Ul CD

[3

^Q^§OS.3O 2<iU 2UQ>5CQ

r-Z

r- *

Page 46: Advanced Study of Column Analogy

43

Solution by the Moment Distribution Method

The distribution of fixed-end moment due to the applied load is

indicated in Table 13. The fixed-end moment at each joint due to side-

sway at B, D, and G respectively are obtained as follows:

1.155( A B)

Fig. 18. Sidesway at B

TABLE 10.- FIXED-END MOMENT DUE TO SIDESWAY AT B

MAB - MBA

MbC " MCB

MCD ~ MDC

.*>;'

6EI( A B)

30^

6EI( 1.1555 AB)

252

6EI(0.973 Ab,2

66. 67

-110.88

26.0

(47.5)'

Page 47: Advanced Study of Column Analogy

44

0.973( A D) 0.973( A D)

Fig. 19. Sidesway at D

TABLE 11.- FIXED-END MOMENT DUE TO SIDESWAY AT D

Ar) _ i*0*i

"bc*' CB6EI(1.155 AD)

252

-110.88

MCD

= MDC6EI(0.973 Ap)

(47. 5)2

26.0

^E= MED

6EI( A D)

30

-66.67

MDF= MFD

6EI(1.155 Ap)

252

110.88

Mnn =FG

,V1

GF6EI(0.973 Ap)

(47.5)2

-26.0

Page 48: Advanced Study of Column Analogy

45

0.973(-4 G)

3?W

Fig. 20. Sidesway at G

TABLE 12.- FIXED-END MOMENT DUE TO SIDESWAY AT G

MDF - MFD- 6EI( 1.155 &G)

252

*h*<"110.88

FG*" ^GF

6EI(0.973 AG)

(47.5)2

26.0

MGH " M

HG

6EI(AG)

30z

-66.67

The distributions of the fixed-end moments due to the sidesway

at point B, D, and G respectively are indicated in Tables 14, 15 and 16.

Page 49: Advanced Study of Column Analogy

46

men o

!

o r>- CML) !«. t cn

LlIo ro

CMCM ro

+ 6 V4-

+ + f-4-

X 15

Iin

ocy

ro

01cn

dcoro

d

CMCU

IOCO

+- +- + + 4-+

vj

X19

mci

d

olfOO+

in<\«r

"i

CO

(0

+

en cu

o+

cOCM

o

toCOCOCM

+

0) n m;o mo CM CO 1^ CO (0 CO CMm <o »- f~-!0 O o _ <M CM' — « •« f-

b.(9 t^ ri

to 90CO

m ro<o!cm

cn o * ro o o 6 coCM

-XiO

1 +1

1

+1 +

1+

1

+ +

<o_J

Ll

13U.

IV.m6

-j

to

d

inrs.

•6to

+

O toCO CO

co.cmTiro

iK

OCM

CM

1

rOin

+

in

CO

1

CO

oCM

+

COCM

ei

1

CO

d

CMcn

d

roCM

d4.

cOCM

6i

CVJ

to

+

QLl!

C<t

CO ro C\j:CM ro ro to T CO r- CMCM

QU.

mm6

mco

°

ro

POro

1

COi|00

co'icoCO'CU

11+

o

1 +

CXI~1

in

+-

ro

I

oCVi

+ 1

md4-

m6

i

to

1

1

go rOI— n in CM cO t— IO 00 CO cO

U.

Oto

in

6CM

rOroro

coj^r^Kif)»

COCM

CM

dCM

Oin

CM o -.

+

cO

dmd

CO

6CO

DQ

O+ + 1 1 f 1

+ 1 + 1 i +

Q UJ

o Omd

mo1*-

O<rCM

CMm

CDro

ro

cn

dcn

o

CM

»-

CO

2 Of + + + -t

4. +-J

m CT)lO o o CO CO _ Ol en en o CM

qLi_ m C\J f- N.jro <7) o CO ro —. a- « T IO

(J t«- O ^cb OJIO er _

:

T ro O O O di

M-

n" X O 10

1

CM,CU

+ 1+ i

+ 1

+1 +

1 I

m xr m od O in CM *r CO CO r^. o cn»

Z m6

T r-- co|m O * cn <J CT) ro -f^.

Ou

o_\*

to

dcoto

+

C0|T CM

1+

CO

1

+O

! +

61

O Ol

IO

4-

)

ca CO ro cm en _ O • ro CM CO m T COIO IOm rO oo!0 CO CO m CO r-- CO CM

(I CO IO10 ro

<o''ctjro ou CM O — — O O to

r-

L X O O1

col

1 ' p 1+

1 +1 +

1

s m rorororo

+

1

col— ol-1

O •>r _ CM o O

CO

oin

mb

md

3Crrh

CM

CM

+ 1

O

i

CO

1

in

ro

+

en

di

in

O+

en

dl

in

d+

cri

1

ro

<CO ^ d

mm

d

miri

I

_ru

O

+

1^CQ

o4-

1

en

CM

+

ro

Td+

CVJ

O

ocn

4.j

CO in

UlCOm - T T,

CM (0

_l < CD

<o•t-

O+

4-O+

1-

+

r--

t-

J)

o

aUlCO

UJ2

it!

Vi-

es 5ui

Ll<cO <

G

i .

o(J

<C

j

P.

r

—<cc

.

ou

<G

< ^

1

Page 50: Advanced Study of Column Analogy

47

Ixl Q IO

6

lOIO

CM

1

oCO

A1

qo

i

CO

o1

OOCO

K1

I 15

XIO

a

cOCM

dI

d

I

IO

d1

&O

I O lO

dco

d

COod

1

IOIO

di

IOOo

1

CM

d1

CD

h-<

1(0

u. lO lO

Ci

cr>

ooIO

d

co o

d d4-

1

"* —IO CM

6 61 1

IO io

! ?

CM

d

U-

u.

lOi-:

IO

6 IO

dq

+

an

+

O coCM <0

? !

_ IO— CM

o d

i

+

01en

CM

4-

LdQCO

o

lOio

O

(0IO

d

- oIO CM

4

lO, <?IO IO

1 4-

— IOIO CO

-d o

1 +

co ^r

IO <b o

i +

C7>

<T)

cm'

1

Ll)

DQ

Q

U.

Q toio

dCOCM<*-

d

oO

q

7

CM g

~- d

*i

CMCMCO

1

CM —o z-

4 1

cO C\J

Q Qo o

i +

COlOIO

1

l-i

Q Od

5TIOIO

d

oCM

05

1

IO<o

pd

!

IO

IO

1

SI

o1

CM

O6+

fIO

IO

1

o OIO

dCMCM

6

O cm

ci 1*5

C\J lO

4 1

CO IOlO lO

- O1 ©

1

oO —IO CM.

+ 1

CO r-1 v ***

2 5b 500 of 1

1 +

o

Oro

•-

zoD

U

O lO

-X

IO

dIO

6

O ^

+ +

— COCO —— io

1 4

CO <=CO ~CM IO

1 1

io <o en cr>

O CM |CM IO

d 6 ° 61 1

1 4

i^»r

Oio

+

tr\-

CO

Q

io io

d

CDIOCO

O

« IO

d io— IO

1 +

<n Mio of- CO

V— +

IO IOO OCM &4 1

IO CM<o lO

d d+ 1

ro IO

* •*.

CJ ©1 +

COTdIO

1

CD

co

IO IO

dIO

IO

d

<D fj>

<o Oo ^— CM

1 +

CM

9 8IO _'

I 4£ 12

4 1

CM IOO co

IO ""

4- 1

CO VCM -1

6 oi 4

CMCM

«r

i

*J-

<CO

Oto

dlOIO•«-

6

f- CMCO —o dCO CM

+ -t-

IO

4

C7)

CO.

CM

1

1*.

1

CM

O4

CMCM

Tr~-

+-

u_iCD < CO

<IO

d

r—10

COCO

+

IOIOCO

1

COoo

4

0)co.

o

en

Oi

OOro

Oi--

t-

0)i-zo->

crUlCO

5dd d

UJ <U. CO U CO

O ^O CO

_io <U CO

o <

Page 51: Advanced Study of Column Analogy

48

UJOUI

10

10(0

1

OJ

1

mro

0J

+d+

d+

mCD

i

X oX in

do m

en

+

m

+

OJi0o1

r--

o+

moj

+

O

Xo

oro in

d to

d

1

oo 9m

+

oO en

03

+

O o7

o ^d+

OJ

o od

i

CO0J

*rOJ

+

u.o

ino-'

v.

in

d

enCOrO

d

o oo ~10 o7 +

« s•^ in

1 +- d+ i

en mCO ">

? ?

o od d+ i

COOJ•*'

OJ

1

U.

ou.

r-^ md ro

d

§ 2d enOJ OJ

1 1

m _O ^in rO

+ +

ro °°

OJ £+ 1

ro Od d

i +

CO

6 o+ I

inrO

d1

QinCO m

dm10

d

CO oCO t>-

d in— m+ I

r>-

9 m^ 10

i +

roCO ^J-

oj ro

+ 1

rO •*

d d+ +

ro O— OJ

d d+ i

mrocd

+

Q

u.Q

IOOJ m

d10CM

d

CO rfcq cr>

d oSX 0J+ i

m

i +

CD c0OJ OJro cD+ +

g a- o

1 +

Is- roO -d d+ +

OJ

Oto+

Q

UJQ

oro m

dmPO

d

r>- OJ10 CO

10 <*•

(O 0J1 1

enO ID

+

0J

O CJ

d+

OJ

o ^d+

oo -

d+

CDOJ

dCO

1

"3

o

nQ

IDin

doOJOJ

d10 inOJ _+ l

S 21 OJ

+ +

CO sj-

CO —ro d

1 +

co **

9 d+ +

itCD CDro Od d

1 +

OJOJ

iri

0J

+M

o

QU

If)

in

d rO

d

O COo —co en

OJ OJ

+ +

ro mIs- r-

(^ r-

i 1

CD

* -— Ovi

+ +

o h

? ?

r- r-

o -d o+ +

CDCO

00

*+

sui co

inOJ m

d

u>inCO

d

CO

o in= m

i +

OJ £

s ?+ 1

en gin 9

i +

— CD

9 JoOJ —

'

+ 1

in _in ro

d d• +

COCO

OJ<*

1

Qm

moj

in

d

mmd

00 ^CO oo dX to

1 +

CO °°

+ i

CO OJro or-' "3-'

\ +

o en

oj 9+ I

°S r-9 io

? ?

CO<3"

d

1

-Oo

<CD

oro m

dinin

d

oo *

oin

+

O (0

oJ

1

o «>rO

rO•+

O en

dl

O ro

d+

CO

d*+

< 03<

in

d ooOJ

inOJ+

rO

CO1

COCO

+

CD

di

COodOJ+

o todd

u.'

d3

u_ m9 o<_> Q3

d oC_) CO CJ 03

d "5

d m

i-_l z< UJ1- 5

Page 52: Advanced Study of Column Analogy

49

UJ a ooCD

CD

+

ro

CD

1

CO

CO

+

CO

bl

CD

CO

b+

COmCO

+

X CDX

r~-

coCO

CO

1

LO

CO

+

in

^'

1

CDCO

+

COsi-

bI

oCO

b+

r-m

+

o

Xcd

o

bCO

b

^ sto 9cci <rCO CO

1 +

oo en

CO

I

° 5rO+

CO

o °|

oCD

O rO

b+

o -b

l

ooCO

I

u.

if)

c-' in

Ci

CDCOrO

b

O ^9 r-CO loCO —+ +

COm co

* 9+ ?

5 2iri co

i +

_ CD

m •«

- b+ 1

ID CO

? ?

2 S

? ?

ooCO

+

u.

cdLl.

LO

S mb

rO

b

O mO -CO CD

CO CO

+ t

cd <u

CO o°

n b+

1

CO ocJ ">

1 +

in coO CO

+ T

o mro ro

rO f>-

b b+ I

CO

oCO

oo

QU.

inco in

b

COinCO

b

CO ^b inX LO

1 +

<J- -CO f-

ro bCO CO

+ 1

in r-en r-

iri "">

I +

to ro

CD *CO CJ

+ 1

ro CO

r- <o

b bi +

CO CJrO ro

b bt I

00oCOin

I

>o2

CJ

-o

«5

O

<u=)

•o

r-

a

Ll.

OLO

(Mv.

in

b

CO00

b

CO

CO CO

2 S— *1 +

co °">

r^ °°

CO ~+ 1

CO _. ro ro

2 lo

I +

°» CO

CO _:

+1

00r^

CO-• o

I +

2; «rO —b o+ I

COin

in

i

LlI

corO in

bmro

b

oo ~

CDro

+

O CO

cri

o *

+

O ?3

T

COO lO

b+

o ?b

I

oororo

+

u.'

c

mb

oCOro

b

O•f

o ^'

CO

+

o [2

CO

1

2 rt

oJ CO

1 +

ro inin r-

b b+ 1

2 «>* rO

b dI +

CO COO OO O+ I

COin

CO

+o

CO

Q

(0

(_>

Qcj

in

r-'

3 ro

bO 8 8

+ l

s sro

' +_• o+ 1

s s

? ?

CO ^J"

b b+ I

COr»

ui

t

CDCJ

co in

bCOinCO

b

O ooCO

I

O OCO

+

CD —O to

+ T

co r—co ob b

I +

CO CO

CO CO

b b+ I

COr-

CO

I

-Oar-

m

Omi\l in

o'

in

in

bo o 2

* CO

1 +

— ino m

+ 1

— «tC0 \f

b bI +

^J- CO

o ob b+ i T

<CO

ofO m

6

min

bo CO

CO

-r-

CO

o *o

I

r~

O ro

b+

CO

O ob

I

r-

+

< CO< o CD

b+

roCO

bI

CD

b+

CO

b+

co-3 CO

ob

Ll.

aLU oLl.' ao

o oO CD

d o<_) CD O CQ

6 oO oo

9 oo CD

_J z<I LU

II

Page 53: Advanced Study of Column Analogy

50

The shear condition, caused by the applied load.

9.70

^"~~N0.478 84 * 24 /£T^\4.21 1 26 . 63 /tf~~N 6 . 33c— c— c-

4.65 \ _y 41.92

The shear condition caused by sidesway at B.

74.22 4.82 -15.34 0.767

0.767

70.38 V / -7.68

The shear condition caused by sidesway at D.

40.48

/B 2.02

-86.26

^~

20.08

/D ^ 5.43

-76.51

The shear condition caused by sidesway at G.

1.71 33.00

/p \l.65

0.87 16.56

63.22

-0.92 /.—^ 0.046

-0.45

24.28

0.046

-48.00

/G ^1.55

1.57

Page 54: Advanced Study of Column Analogy

51

0.478 + 4.82k1

- 0.767k2

- 0.046k3=

4.210 + 2.02k! - 5.430k2 + 1.210kg =

6.330 + 0.086k! + 1.65k2- 1.550kg =

Solve for k, , k , and k_, from these three equations.

kx= -0.11

k2= -0.30

kg = 1.80

MAR = 4.64 - (0.113(70.38) - (0.30)(20.08) + (l.8)(0.87) = -7.54"AB

MgA= -MgC

= 9.70 - (0.11)(74.42) - (0.30)(40.48) + (l.80)(l.7l)

= -7.51

MCB

= "MCD= - 137 ' 34 " (0.1l)(-50.48) - (0.30)(-42.86)

+ (l.80)(-6.76) = -131.13

Mj^ = -145.02 - (0.11)(30.9) - (0.30)(25.22) + (l.80)( 18.56)

= -121.59

M^ = 84.24 - (0.11)(-15.34) - (0.30)( -86. 26) + (l.80)(33.00)

= 170.21

Mnr,= 41.92 - (0.1l)(-7.68) - (0.30)(76.5l) + (l.80)(l6.56) = 95.49

ED-

MDF= 60.68 - (0.11)(-15.52) - (0.30)(61.02) + (l.80)(-51.56)

= 48.8

Page 55: Advanced Study of Column Analogy

52

o

"ocHR) »\

+-> TDja C •

-^ CJ

+> —^ o •He e *i

(0

h c C(Jl o cIS .1-1 •H.— -J t'j

-o 3 01

XI o+J •»-i Mc h aQ) +J ee U3 oc •H o£ TJ

aen +J x:c C *J•H CJ

+J £ ciH o o3 1O -aO o CD

N x: -P-t-> +J

o ox: >.-HH Xi a

Dl

Page 56: Advanced Study of Column Analogy

53

MFD

= MFG

= 46,35 " (°- n )(-52 * 08 ) ~ (0.30)(46.35)

(l.80)(-52.04) = -238.9

%F ="%H

= - 126 ' 72 ~ (0.11)(0.92) - (0.30)(-24.28)

(1.80)(48.00) = -33.25

MHG= 63.22 - (0.1l)(-0.45) - (0.30)(l2.15)

(l.80)(0.87) = 61.19

CONCLUSIONS

It appears that the method of the column analogy can be applied

in finding moments and stiffness and carry-over factors for statically

indeterminate structures with either a symmetrical or unsymmetrical

cross section, in a direct manner.

The comparison vof the results of the column analogy method and

the moment distribution method reveals that the results, which are

obtained by these two methods, are essentially identical, as shown in

Fig. 17 and Fig. 21. The column analogy method took much less time

than the moment -distribution method, when they were both used to

solve the double bay gable frame in this report.

Page 57: Advanced Study of Column Analogy

54

ACKNOWLEDGMENT

The author wishes to express his deep appreciation to his

major professor, Dr. Robert R. Snell, for his advice, guidance,

suggestions, and encouragement during the preparation of this re-

port.

Page 58: Advanced Study of Column Analogy

55

NOTATION

x, y = Coordinates of any point on the cross-section along any two

mutually perpendicular axes X and Y through the centroid of

the section,

f = Intensity of normal stress at point x, y.

A = Area of section.

I =J y dA i— Moment of inertia about X axis (along the Y axis).

( 2Iy -

J x dA Moment of inertia about Y axis.

I = IxydA Product of inertia about axes X, and Y

P = Normal component of external forces.

*

M = Moment of external forces about X axis,x

M - Moment of external forces about Y axis.

K \ - V-if"'

X

,11=1-1 (xy

)

X

I'M - I L-2L.)y y xf i

J

y

= A relative rotation of the two ends of the cut.

A = Relative horizontal displacement of the two ends of the cut.x

y = Relative vertical displacement of the two ends of the cut.

Page 59: Advanced Study of Column Analogy

56

M - Determinate moment throughout the entire ring due to the loads

P.., P , .... after the ring is cut.

M - Indeterminate moment due to the forces F acting on the ends

of the cut.

Page 60: Advanced Study of Column Analogy

57

REFERENCES

1. Cross, HardyThe Column Analogy. University of Illinois EngineeringExperiment Station Bulletin 215, 1930.

2. Cross, HardyContinuous Frames of Reinforced Concrete. New York:Wiley, 1932.

3. Fif, Walter Maxwell and Wilbur, John BensonTheory of Statically Indeterminate Structures. New York:Edward Arnold Ltd., 1937.

4. Micholas, James P.

Theory of Structural Analysis and Design. New York:The Ronald Press Co., 1958.

5. Shedd, Thomas Clark and Vawter, JamesonTheory of Simple Structures. New York: John Wiley and Sons.

1949.

6. Sutherland, Hale and Bowman, Harry Lake

Structural Theory. New York: Wiley, 1950.

7. Wang, Chu-KiaStatically Indeterminate Structures. New York:

Toronto, and London: McGraw-Hill Book Co., 1953.

8. Williams, Clifford D.

Analysis of Statically Indeterminate Structures. 4th Ed.

Scranton, Pennsylvania: International Textbook Co., 1959.

Page 61: Advanced Study of Column Analogy

ADVANCED STUDY OF THE COLUMN ANALOGY METHOD

by

DAVID K. C. CHENG

B. S. , Taiwan Provincial Taipei Institute ofTechnology, 1957

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITYManhattan, Kansas

1964

Page 62: Advanced Study of Column Analogy

The purpose of this report is to show the general derivation

and application of the method of column analogy. This method is very

useful in finding the moments in third degree statically indeterminate

structures.

The formulas of this method are derived from two sets of equations.

The first set is found by setting the rotation and displacements caused

by the determinate moments equal and opposite to those caused by the in-

determinate moments. In other words, by enforcing the continuity re-

quirements of the structure.

6d= -e

i.

A j = -A .

yd yi

A = -A .

xd xi

or, it can be written as:

jMd _!_( x) +

jMi _|_(x) = o

JMd -ff-(y)J «i -ff-(y)

=

The second set of equations is obtained from the equations of

static equilibrium for an imaginary column loaded with the Mj diagram

of the ring. The analogous column has the same axis and the same length

as the ring and has a thickness of l/EI.

Page 63: Advanced Study of Column Analogy

SV =

(u ds ( ds _ .

JMd.-Er

+jMi-Er -°

ZMy

= 0.

jMd-|f-(x) + JM.-|f-(x) =

ZM =x

J^ffrM /vi-M - °

In comparing these two sets of equations we see that if M. = F,

they are identical. Therefore, we can determine the indeterminate

moments in the ring by calculating the fiber stresses in the analogous

column. The formula for computing the fiber stresses in a column,

either concentrically loaded or eccentrically loaded, is:

p Mx (y)

M (x)

A Xx

xy

In the application section of this report is shown the general

use of the column analogy method in finding moments in a frame, fixed-end

moments and stiffness and carry-over factors for members of a frame to be

used in the moment distribution method.

The comparison of the results of the column analogy method and

the moment distribution method reveals that the results, which are ob-

tained by these two methods, are essentially identical. The column

analogy method took much less time than the moment distribution method

when they were both used to solve the double bay gable frame in this

report.